scholarly journals Effects of Transcranial Direct Current Stimulation on effort during a working-memory task

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
David Framorando ◽  
Tianlan Cai ◽  
Yi Wang ◽  
Alan J. Pegna

AbstractTranscranial Direct Current Stimulation (tDCS) has shown that stimulation of Dorsolateral Prefrontal Cortex (DLPFC) facilitates task performance in working-memory tasks. However, little is known about its potential effects on effort. This study examined whether tDCS affects effort during a working-memory task. Participants received anodal, cathodal and sham stimulation over DLPFC across three sessions before carrying out a 2-back task. During the task, effort-related cardiovascular measures were recorded—especially the Initial Systolic Time Interval (ISTI). Results showed that anodal stimulation produced a shorter ISTI, indicating a greater effort compared to cathodal and sham conditions, where effort was lower. These findings demonstrate that anodal stimulation helps participants to maintain engagement in a highly demanding task (by increasing task mastery), without which they would otherwise disengage. This study is the first to show that tDCS impacts the extent of effort engaged by individuals during a difficult task.

2021 ◽  
Vol 15 ◽  
Author(s):  
Haixia Wang ◽  
Hanqi Zhang

People seek the best in every aspect of life. However, little is known about the neurobiological mechanisms supporting this process of maximization. In this study, maximization tendencies were increased by using high-definition transcranial direct current stimulation (HD-tDCS) over the right dorsolateral prefrontal cortex (DLPFC). Participants (n = 64) received 2 mA anodal 4 × 1 HD-tDCS or sham stimulation over the right DLPFC in two sessions and subsequently completed an N-back working memory task and a maximization scale (MS). We observed that maximization tendency scores increased during anodal stimulation. Furthermore, the results indicate that this increase in maximization tendency was driven by motivational changes. On the MS, alternative search subscale scores were significantly increased, demonstrating an increase in motivation to evaluate more alternatives; however, the results did not indicate that the increase in maximization tendencies was due to working memory improvement. These results demonstrated that maximization tendencies can be strengthened through noninvasive interventions and that the right DLPFC has a causal relationship with maximization tendencies.


2017 ◽  
Vol 29 (9) ◽  
pp. 1498-1508 ◽  
Author(s):  
Benjamin Katz ◽  
Jacky Au ◽  
Martin Buschkuehl ◽  
Tessa Abagis ◽  
Chelsea Zabel ◽  
...  

A great deal of interest surrounds the use of transcranial direct current stimulation (tDCS) to augment cognitive training. However, effects are inconsistent across studies, and meta-analytic evidence is mixed, especially for healthy, young adults. One major source of this inconsistency is individual differences among the participants, but these differences are rarely examined in the context of combined training/stimulation studies. In addition, it is unclear how long the effects of stimulation last, even in successful interventions. Some studies make use of follow-up assessments, but very few have measured performance more than a few months after an intervention. Here, we utilized data from a previous study of tDCS and cognitive training [Au, J., Katz, B., Buschkuehl, M., Bunarjo, K., Senger, T., Zabel, C., et al. Enhancing working memory training with transcranial direct current stimulation. Journal of Cognitive Neuroscience, 28, 1419–1432, 2016] in which participants trained on a working memory task over 7 days while receiving active or sham tDCS. A new, longer-term follow-up to assess later performance was conducted, and additional participants were added so that the sham condition was better powered. We assessed baseline cognitive ability, gender, training site, and motivation level and found significant interactions between both baseline ability and motivation with condition (active or sham) in models predicting training gain. In addition, the improvements in the active condition versus sham condition appear to be stable even as long as a year after the original intervention.


2020 ◽  
Vol 10 (8) ◽  
pp. 497
Author(s):  
Hipólito Marrero ◽  
Sara Nila Yagual ◽  
Enrique García-Marco ◽  
Elena Gámez ◽  
David Beltrán ◽  
...  

We examine the effect of transcranial direct current stimulation (tDCS) of right superior temporal sulcus (rSTS) in memorization of approach/avoidance relationship-action sentences; for example, “Alejandro accepted/rejected Marta in his group.” Sixty-five university students participated in a tDCS study, in which a between-subjects design was adopted. Sixty-four participants were also given the behavioral approach system (BAS) and behavioral inhibition system (BIS) scales. Participants were subjected to 20 min of stimulation: anodal (N = 24), cathodal (N = 21), or sham (N = 20); subsequently, they were given a list of 40 sentences (half approach and half avoidance) and told to try to memorize them. Finally, they performed a changed/same memory task (half the sentences were the “same” and half were “changed”). Previously, we had examined performance in the memory task without tDCS with another group of participants (N = 20). We found that anodal stimulation improved d’ index of discriminability (hits-false alarms) compared to sham and cathodal conditions for both approach and avoidance sentences. Moreover, the comparison between anodal and task-alone performance showed that stimulation improved d’ index of approach sentences more, as task-alone performance showed better discrimination for avoidance than for approach. Likewise, we explored a potential modulation of tDCS effect by (BAS) and (BIS) traits. We found that d’ index improvement in anodal stimulation condition only benefited low BAS and low BIS participants. Implications of these results are discussed in the context of rSTS function in encoding and memorizing verbally described intentional relationship-actions and the role of individual differences on modulating tDCS effect.


2021 ◽  
pp. 1-13
Author(s):  
Raquel E. London ◽  
Heleen A. Slagter

Selection mechanisms that dynamically gate only relevant perceptual information for further processing and sustained representation in working memory are critical for goal-directed behavior. We examined whether this gating process can be modulated by transcranial direct current stimulation (tDCS) over left dorsolateral prefrontal cortex (lDLPFC)—a region known to play a key role in working memory and conscious access. Specifically, we examined the effects of tDCS on the magnitude of the “attentional blink” (AB), a deficit in identifying the second of two targets presented in rapid succession. Thirty-four participants performed an AB task before (baseline), during and after 20 min of 1-mA anodal and cathodal tDCS in two separate sessions. On the basis of previous reports linking individual differences in AB magnitude to individual differences in DLPFC activity and on the basis of suggestions that effects of tDCS depend on baseline brain activity levels, we hypothesized that anodal tDCS over lDLPFC would modulate the magnitude of the AB as a function of individual baseline AB magnitude. Behavioral results did not provide support for this hypothesis. At the group level, we also did not observe any significant effects of tDCS, and a Bayesian analysis revealed strong evidence that tDCS to lDLPFC did not affect AB performance. Together, these findings do not support the idea that there is an optimal level of prefrontal cortical excitability for cognitive function. More generally, they add to a growing body of work that challenges the idea that the effects of tDCS can be predicted from baseline levels of behavior.


2019 ◽  
Author(s):  
Derek Ellis ◽  
Gene Arnold Brewer ◽  
Memory & Attention Control Laboratory

A standard finding in the event-based prospective memory literature is that focal cues are more often detected than nonfocal cues. The multiprocess view of prospective memory accounts for this result by suggesting that dorsolateral prefrontal cortex (DLPFC) mediated executive processes are necessary for nonfocal cue detection while hippocampally mediated spontaneous retrieval processes support detection of focal cues. In agreement with the multiprocess view, previous studies have found that working memory capacity is predictive of prospective memory performance through detection of nonfocal cues, but non-predictive for focal cues. Because the DLPFC is known to support working memory maintenance, we predicted that anodal transcranial direct current stimulation (tDCS) of the DLPFC would increase prospective memory cue detection for nonfocal cues when compared with a sham condition. Critically, we also expected an interaction between prospective memory cue type and stimulation such that anodal stimulation would not influence focal cue detection. Our results replicated the standard effect of improved focal compared to nonfocal cue detection. However, there was no significant effect between the sham and active tDCS conditions. Furthermore, we did not find the expected interaction between cue type and stimulation. Not only do our findings add onto the growing literature of tDCS experiments that failed to find stimulation effects to DLPFC, but it is also one of the first studies to incorporate prospective memory with tDCS.


Sign in / Sign up

Export Citation Format

Share Document