scholarly journals The Drake Passage opening from an experimental fluid dynamics point of view

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Miklós Vincze ◽  
Tamás Bozóki ◽  
Mátyás Herein ◽  
Ion Dan Borcia ◽  
Uwe Harlander ◽  
...  

AbstractPronounced global cooling around the Eocene–Oligocene transition (EOT) was a pivotal event in Earth’s climate history, controversially associated with the opening of the Drake Passage. Using a physical laboratory model we revisit the fluid dynamics of this marked reorganization of ocean circulation. Here we show, seemingly contradicting paleoclimate records, that in our experiments opening the pathway yields higher values of mean water surface temperature than the “closed” configuration. This mismatch points to the importance of the role ice albedo feedback plays in the investigated EOT-like transition, a component that is not captured in the laboratory model. Our conclusion is supported by numerical simulations performed in a global climate model (GCM) of intermediate complexity, where both “closed” and “open” configurations were explored, with and without active sea ice dynamics. The GCM results indicate that sea surface temperatures would change in the opposite direction following an opening event in the two sea ice dynamics settings, and the results are therefore consistent both with the laboratory experiment (slight warming after opening) and the paleoclimatic data (pronounced cooling after opening). It follows that in the hypothetical case of an initially ice-free Antarctica the continent could have become even warmer after the opening, a scenario not indicated by paleotemperature reconstructions.

2021 ◽  
Author(s):  
Matyas Herein ◽  
Miklos Vinzce ◽  
Tamas Bozoki ◽  
Ion Dan Borcia ◽  
Uwe Harlander ◽  
...  

<p>Pronounced global cooling around the Eocene-Oligocene transition (EOT) was a pivotal event in Earth’s climate history, controversially associated with the opening of the Drake Passage.  Using a physical laboratory model we revisit the fluid dynamics of this marked reorganization of ocean circulation. Our differentially heated rotating annulus is a widely studied experimental set-up designed to model mid-latitude circulation in the atmosphere and the ocean, as well. Here we show, seemingly contradicting paleoclimate records that in our experiments opening the pathway yields higher values of mean water surface temperature than the “closed” configuration. This mismatch points to the importance of the crucial role ice albedo feedback plays in the investigated EOT-like transition, a component that is not captured in the laboratory model. Our conclusion is supported by numerical simulations performed in a global climate model (GCM) of intermediate complexity, where both “closed” and “open” configurations were explored, with and without active ice-albedo feedback. The GCM results indicate that sea surface temperatures would change in the opposite direction following an opening event in the two ice dynamics settings, and the results are therefore consistent both with the laboratory experiment (slight warming after opening) and the paleoclimatic data (pronounced cooling after opening). It follows that in the hypothetical case of an initially ice-free Antarctica the continent could have become even warmer after the opening, a scenario not indicated by paleotemperature reconstruction. These results provide circumstantial evidence supporting a particular EOT scenario in which Antarctica had already been – at least partially – covered with ice when the Drake Passage fully opened.</p>


2021 ◽  
Author(s):  
Miklos Vincze ◽  
Tamás Bozóki ◽  
Mátyás Herein ◽  
Ion Dan Borcia ◽  
Uwe Harlander ◽  
...  

Abstract Pronounced global cooling around the Eocene-Oligocene transition (EOT) was a pivotal event in Earth’s climate history, controversially associated with the opening of the Drake Passage. Using a physical laboratory model we revisit the fluid dynamics of this marked reorganization of ocean circulation. Here we show, seemingly contradicting paleoclimate records, that in our experiments opening the pathway yields higher values of mean water surface temperature than the "closed'" configuration. This mismatch points to the importance of the role ice albedo feedback plays in the investigated EOT-like transition, a component that is not captured in the laboratory model. Our conclusion is supported by numerical simulations performed in a global climate model (GCM) of intermediate complexity, where both "closed" and "open" configurations were explored, with and without active sea-ice dynamics. The GCM results indicate that sea surface temperatures would change in the opposite direction following an opening event in the two ice dynamics settings, and the results are therefore consistent both with the laboratory experiment (slight warming after opening) and the paleoclimatic data (pronounced cooling after opening). It follows that in the hypothetical case of an initially ice-free Antarctica the continent could have become even warmer after the opening, a scenario not indicated by paleotemperature reconstruction. These results provide circumstantial evidence supporting a particular EOT scenario in which Antarctica has already been -- at least partially -- covered with ice when the Drake Passage fully opened.


1994 ◽  
Vol 32 (2) ◽  
pp. 449-467 ◽  
Author(s):  
David Pollard ◽  
Starley L. Thompson

2006 ◽  
Vol 3 (4) ◽  
pp. 777-803
Author(s):  
W. Connolley ◽  
A. Keen ◽  
A. McLaren

Abstract. We present results of an implementation of the Elastic Viscous Plastic (EVP) sea ice dynamics scheme into the Hadley Centre coupled ocean-atmosphere climate model HadCM3. Although the large-scale simulation of sea ice in HadCM3 is quite good with this model, the lack of a full dynamical model leads to errors in the detailed representation of sea ice and limits our confidence in its future predictions. We find that introducing the EVP scheme results in a worse initial simulation of the sea ice. This paper documents various improvements made to improve the simulation, resulting in a sea ice simulation that is better than the original HadCM3 scheme overall. Importantly, it is more physically based and provides a more solid foundation for future improvement. We then consider the interannual variability of the sea ice in the new model and demonstrate improvements over the HadCM3 simulation.


Ocean Science ◽  
2006 ◽  
Vol 2 (2) ◽  
pp. 201-211 ◽  
Author(s):  
W. M. Connolley ◽  
A. B. Keen ◽  
A. J. McLaren

Abstract. We present results of an implementation of the Elastic Viscous Plastic (EVP) sea ice dynamics scheme into the Hadley Centre coupled ocean-atmosphere climate model HadCM3. Although the large-scale simulation of sea ice in HadCM3 is quite good with this model, the lack of a full dynamical model leads to errors in the detailed representation of sea ice and limits our confidence in its future predictions. We find that introducing the EVP scheme results in a worse initial simulation of the sea ice. This paper documents various enhancements made to improve the simulation, resulting in a sea ice simulation that is better than the original HadCM3 scheme overall. Importantly, it is more physically based and provides a more solid foundation for future development. We then consider the interannual variability of the sea ice in the new model and demonstrate improvements over the HadCM3 simulation.


2021 ◽  
Author(s):  
Thomas Rackow ◽  
Nils Wedi ◽  
Kristian Mogensen ◽  
Peter Dueben ◽  
Helge F. Goessling ◽  
...  

<p>This presentation will give an overview about an ongoing collaboration between the European Centre for Medium-Range Weather Forecasts (ECMWF) and the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI). Our recent development is a single-executable coupled configuration of the Integrated Forecasting System (IFS) and the Finite Volume Sea Ice-Ocean Model, FESOM2. This configuration is set up to participate in the DYAMOND project alongside ECMWF’s default IFS-NEMO configuration. IFS-FESOM2 and IFS-NEMO are tentative models to generate “Digital Twin” storm-scale, coupled simulations as envisioned in the European Destination Earth (DestinE) and Next Generation Earth Modelling Systems (NextGEMS) projects.</p><p>FESOM2 has a novel dynamical core that supports multi-resolution triangular grids. The model and its predecessor FESOM1 have been used in many studies over the last decade, with a focus on the role of the polar regions in global ocean circulation. The impact of eddy-permitting and locally eddy-resolving resolution has been addressed in CMIP6 and HighResMIP simulations as part of the AWI-CM-1-1 global climate model, while simulations with up to 1km resolution in the Arctic Ocean have been performed in stand-alone mode.</p><p>Initially, two coupled IFS-FESOM2 configurations have been tested: A coarse-resolution setup with a nominal 1° ocean, and a DYAMOND-II configuration with 0.25° ocean and IFS at 4.5km global resolution on average. For the latter configuration, FESOM2 is mimicking the “ORCA025” tri-polar curvilinear grid of the NEMO model, whose grid boxes have been split into triangles. Initialisation is from ECMWF’s analysis for IFS and NEMO, and from an ERA5-forced ocean spin-up for FESOM2. We discuss technical challenges with respect to the hybrid OpenMP and MPI parallelization in a single-executable context, describe a novel strategy for resource-efficient writing of model output, and summarise future applications such as exploring the impact of flexible FESOM2 grid configurations on the atmosphere - with ocean simulations that resolve leads in sea ice and ocean eddies almost everywhere.</p>


Sign in / Sign up

Export Citation Format

Share Document