scholarly journals Thioester synthesis through geoelectrochemical CO2 fixation on Ni sulfides

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Norio Kitadai ◽  
Ryuhei Nakamura ◽  
Masahiro Yamamoto ◽  
Satoshi Okada ◽  
Wataru Takahagi ◽  
...  

AbstractA prevailing scenario of the origin of life postulates thioesters as key intermediates in protometabolism, but there is no experimental support for the prebiotic CO2 fixation routes to thioesters. Here we demonstrate that, under a simulated geoelectrochemical condition in primordial ocean hydrothermal systems (–0.6 to –1.0 V versus the standard hydrogen electrode), nickel sulfide (NiS) gradually reduces to Ni0, while accumulating surface-bound carbon monoxide (CO) due to CO2 electroreduction. The resultant partially reduced NiS realizes thioester (S-methyl thioacetate) formation from CO and methanethiol even at room temperature and neutral pH with the yield up to 35% based on CO. This thioester formation is not inhibited, or even improved, by 50:50 coprecipitation of NiS with FeS or CoS (the maximum yields; 27 or 56%, respectively). Such a simple thioester synthesis likely occurred in Hadean deep-sea vent environments, setting a stage for the autotrophic origin of life.

2020 ◽  
Author(s):  
Norio Kitadai ◽  
Ryuhei Nakamura ◽  
Masahiro Yamamoto ◽  
Satoshi Okada ◽  
Wataru Takahagi ◽  
...  

Abstract Thioester synthesis by CO dehydrogenase/acetyl-CoA synthase is among the most ancient autotrophic metabolisms. Although the preceding prebiotic CO2 fixation routes to thioesters are often suggested, none has any experimentally supported evidence. Here we demonstrate that, under an electrochemical condition realizable in early ocean hydrothermal systems, nickel sulfide (NiS) gradually reduces to Ni0, while accumulating surface-bound CO due to CO2 electroreduction. The resultant partially reduced NiS facilitates thioester (S-methyl thioacetate) formation from CO and methanethiol even at room temperature and neutral pH. This thioester formation can further be enhanced up to a selectivity of 56% by NiS coprecipitating with FeS or CoS. Considering the central role of Ni in the enzymatic process mentioned above, our demonstrated thioester synthesis with the partially reduced NiS could have a direct implication to the autotrophic origin of life.


2020 ◽  
Author(s):  
Norio Kitadai ◽  
Ryuhei Nakamura ◽  
Masahiro Yamamoto ◽  
Satoshi Okada ◽  
Wataru Takahagi ◽  
...  

Thioester synthesis by CO dehydrogenase/acetyl-CoA synthase is among the most ancient autotrophic metabolisms. Although the preceding prebiotic CO2 fixation routes to thioesters are often suggested, none has any experimentally supported evidence. Here we demonstrate that, under an electrochemical condition realizable in early ocean hydrothermal systems, nickel sulfide (NiS) gradually reduces to Ni0, while accumulating surface-bound CO due to CO2 electroreduction. The resultant partially reduced NiS facilitates thioester (S-methyl thioacetate) formation from CO and methanethiol even at room temperature and neutral pH. This thioester formation can further be enhanced up to a selectivity of 56% by NiS coprecipitating with FeS or CoS. Considering the central role of Ni in the enzymatic process mentioned above, our demonstrated thioester synthesis with the partially reduced NiS could have a direct implication to the autotrophic origin of life.<br>


2020 ◽  
Author(s):  
Norio Kitadai ◽  
Ryuhei Nakamura ◽  
Masahiro Yamamoto ◽  
Satoshi Okada ◽  
Wataru Takahagi ◽  
...  

Thioester synthesis by CO dehydrogenase/acetyl-CoA synthase is among the most ancient autotrophic metabolisms. Although the preceding prebiotic CO2 fixation routes to thioesters are often suggested, none has any experimentally supported evidence. Here we demonstrate that, under an electrochemical condition realizable in early ocean hydrothermal systems, nickel sulfide (NiS) gradually reduces to Ni0, while accumulating surface-bound CO due to CO2 electroreduction. The resultant partially reduced NiS facilitates thioester (S-methyl thioacetate) formation from CO and methanethiol even at room temperature and neutral pH. This thioester formation can further be enhanced up to a selectivity of 56% by NiS coprecipitating with FeS or CoS. Considering the central role of Ni in the enzymatic process mentioned above, our demonstrated thioester synthesis with the partially reduced NiS could have a direct implication to the autotrophic origin of life.<br>


2020 ◽  
Author(s):  
Norio Kitadai ◽  
Ruhei Nakamura ◽  
Masahiro Yamamoto ◽  
Satoshi Okada ◽  
Wataru Takahagi ◽  
...  

<i></i>Thioester synthesis via CO2 fixation by CO dehydrogenase/acetyl-CoA synthase is among the most ancient autotrophic metabolism often suggested to have a prebiotic root. Here we demonstrate that, under an electrochemical condition realizable in early ocean hydrothermal systems, nickel sulfide (NiS) gradually reduces to Ni0, thereby drastically enhancing its capability of driving nonenzymatic CO2 fixation. It catalyzes CO2 electroreduction to CO, concentrates CO on the surface Ni0 sites, and promotes CO condensation to a thioester in the presence of methanethiol. Even greater CO-to-thioester reaction efficiency is realized with NiS coprecipitating with FeS or CoS. Considering the central role of Ni in the enzymatic process mentioned above, our demonstrated thioester synthesis by the partially electroreduced NiS could have a direct implication to the autotrophic origin of life.<br>


2020 ◽  
Author(s):  
Kazumu Kaneko ◽  
Yasuhito Sekine ◽  
Takazo Shibuya ◽  
Hisahiro Ueda ◽  
Natsumi Noda

2019 ◽  
Vol 5 (6) ◽  
pp. eaav7848 ◽  
Author(s):  
Norio Kitadai ◽  
Ryuhei Nakamura ◽  
Masahiro Yamamoto ◽  
Ken Takai ◽  
Naohiro Yoshida ◽  
...  

One of the most plausible scenarios of the origin of life assumes the preceding prebiotic autotrophic metabolism in sulfide-rich hydrothermal vent environments. However, geochemical mechanisms to harness the reductive power provided by hydrothermal systems remain to be elucidated. Here, we show that, under a geoelectrochemical condition realizable in the early ocean hydrothermal systems, several metal sulfides (FeS, Ag2S, CuS, and PbS) undergo hour- to day-scale conversion to the corresponding metals at ≤−0.7 V (versus the standard hydrogen electrode). The electrochemically produced FeS-Fe0 assemblage promoted various reactions including certain steps in the reductive tricarboxylic acid cycle with efficiencies far superior to those due to pure FeS. The threshold potential is readily generated in the H2-rich alkaline hydrothermal systems that were probably ubiquitous on the Hadean seafloor. Thus, widespread metal production and metal-sustained primordial metabolism were likely to occur as a natural consequence of the active hydrothermal processes on the Hadean Earth.


Sign in / Sign up

Export Citation Format

Share Document