autotrophic metabolism
Recently Published Documents


TOTAL DOCUMENTS

35
(FIVE YEARS 15)

H-INDEX

9
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Stefano Cestellos-Blanco ◽  
Sheena Louisia ◽  
Michael Ross ◽  
Yifan Li ◽  
Tyler Detomasi ◽  
...  

CO2 valorization is aimed at converting waste CO2 to value-added products. While steady progress has been achieved through diverse catalytic strategies, including CO2 electrosynthesis, CO2 thermocatalysis, and biological CO2 fixation, each of these approaches have distinct limitations. Inorganic catalysts only enable synthesis beyond C2 and C3 products with poor selectivity and with a high energy requirement. Meanwhile, although biological organisms can selectively produce complex products from CO2, their slow autotrophic metabolism limits their industrial feasibility. Here, we present an abiotic approach leveraging electrochemical and thermochemical catalysis to complete the conversion of CO2 to life-sustaining carbohydrate sugars akin to photosynthesis. CO2 was electrochemically converted to glycolaldehyde and formaldehyde using copper nanoparticles and boron-doped diamond cathodes, respectively. CO2-derived glycolaldehyde then served as the key autocatalyst for the formose reaction, where glycolaldehyde and formaldehyde combined in the presence of an alkaline earth metal catalyst to form a variety of C4 - C8 sugars, including glucose. In turn, these sugars were used as a feedstock for fast-growing and genetically modifiable Escherichia coli. Altogether, we have assembled a platform that pushes the boundaries of product complexity achievable from CO2 conversion while demonstrating CO2 integration into life-sustaining sugars.


2021 ◽  
pp. 1-18
Author(s):  
Leen Assil-Companioni ◽  
Giovanni Davide Barone ◽  
Marc M. Nowaczyk ◽  
Robert Kourist

PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0253224
Author(s):  
Patrick Ronan ◽  
Otini Kroukamp ◽  
Steven N. Liss ◽  
Gideon Wolfaardt

As the effects of climate change become increasingly evident, the need for effective CO2 management is clear. Microalgae are well-suited for CO2 sequestration, given their ability to rapidly uptake and fix CO2. They also readily assimilate inorganic nutrients and produce a biomass with inherent commercial value, leading to a paradigm in which CO2-sequestration, enhanced wastewater treatment, and biomass generation could be effectively combined. Natural non-axenic phototrophic cultures comprising both autotrophic and heterotrophic fractions are particularly attractive in this endeavour, given their increased robustness and innate O2-CO2 exchange. In this study, the interplay between CO2-consuming autotrophy and CO2-producing heterotrophy in a non-axenic phototrophic biofilm was examined. When the biofilm was cultivated under autotrophic conditions (i.e. no organic carbon), it grew autotrophically and exhibited CO2 uptake. After amending its growth medium with organic carbon (0.25 g/L glucose and 0.28 g/L sodium acetate), the biofilm rapidly toggled from net-autotrophic to net-heterotrophic growth, reaching a CO2 production rate of 60 μmol/h after 31 hours. When the organic carbon sources were provided at a lower concentration (0.125 g/L glucose and 0.14 g/L sodium acetate), the biofilm exhibited distinct, longitudinally discrete regions of heterotrophic and autotrophic metabolism in the proximal and distal halves of the biofilm respectively, within 4 hours of carbon amendment. Interestingly, this upstream and downstream partitioning of heterotrophic and autotrophic metabolism appeared to be reversible, as the position of these regions began to flip once the direction of medium flow (and hence nutrient availability) was reversed. The insight generated here can inform new and important research questions and contribute to efforts aimed at scaling and industrializing algal growth systems, where the ability to understand, predict, and optimize biofilm growth and activity is critical.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0248814
Author(s):  
Marta Mammone ◽  
Christine Ferrier-Pagés ◽  
Silvia Lavorano ◽  
Lucia Rizzo ◽  
Stefano Piraino ◽  
...  

Ecological profiling of non-native species is essential to predict their dispersal and invasiveness potential across different areas of the world. Cassiopea is a monophyletic taxonomic group of scyphozoan mixotrophic jellyfish including C. andromeda, a recent colonizer of sheltered, shallow-water habitats of the Mediterranean Sea, such as harbors and other light-limited, eutrophic coastal habitats. To assess the ecophysiological plasticity of Cassiopea jellyfish and their potential to spread across the Mare Nostrum by secondary introductions, we investigated rapid photosynthetic responses of jellyfish to irradiance transitions—from reduced to increased irradiance conditions (as paradigm of transition from harbors to coastal, meso/oligotrophic habitats). Laboratory incubation experiments were carried out to compare oxygen fluxes and photobiological variables in Cassiopea sp. immature specimens pre-acclimated to low irradiance (PAR = 200 μmol photons m−2 s−1) and specimens rapidly exposed to higher irradiance levels (PAR = 500 μmol photons m−2 s−1). Comparable photosynthetic potential and high photosynthetic rates were measured at both irradiance values, as also shown by the rapid light curves. No significant differences were observed in terms of symbiont abundance between control and treated specimens. However, jellyfish kept at the low irradiance showed a higher content in chlorophyll a and c (0.76±0.51SD vs 0.46±0.13SD mg g-1 AFDW) and a higher Ci (amount of chlorophyll per cell) compared to jellyfish exposed to higher irradiance levels. The ratio between gross photosynthesis and respiration (P:R) was >1, indicating a significant input from the autotrophic metabolism. Cassiopea sp. specimens showed high photosynthetic performances, at both low and high irradiance, demonstrating high potential to adapt to sudden changes in light exposure. Such photosynthetic plasticity, combined with Cassiopea eurythermal tolerance and mixotrophic behavior, jointly suggest the upside-down jellyfish as a potentially successful invader in the scenario of a warming Mediterranean Sea.


2021 ◽  
Vol 9 (2) ◽  
pp. 458 ◽  
Author(s):  
Jessica L. E. Wimmer ◽  
Andrey do Nascimento Vieira ◽  
Joana C. Xavier ◽  
Karl Kleinermanns ◽  
William F. Martin ◽  
...  

The metabolism of cells contains evidence reflecting the process by which they arose. Here, we have identified the ancient core of autotrophic metabolism encompassing 404 reactions that comprise the reaction network from H2, CO2, and ammonia (NH3) to amino acids, nucleic acid monomers, and the 19 cofactors required for their synthesis. Water is the most common reactant in the autotrophic core, indicating that the core arose in an aqueous environment. Seventy-seven core reactions involve the hydrolysis of high-energy phosphate bonds, furthermore suggesting the presence of a non-enzymatic and highly exergonic chemical reaction capable of continuously synthesizing activated phosphate bonds. CO2 is the most common carbon-containing compound in the core. An abundance of NADH and NADPH-dependent redox reactions in the autotrophic core, the central role of CO2, and the circumstance that the core’s main products are far more reduced than CO2 indicate that the core arose in a highly reducing environment. The chemical reactions of the autotrophic core suggest that it arose from H2, inorganic carbon, and NH3 in an aqueous environment marked by highly reducing and continuously far from equilibrium conditions. Such conditions are very similar to those found in serpentinizing hydrothermal systems.


2021 ◽  
Vol 7 ◽  
Author(s):  
Lara S. Garcia-Corral ◽  
Carlos M. Duarte ◽  
Susana Agusti

Net community production (NCP) is a community level process informing on the balance between production and consumption, determining the role of plankton communities in carbon and nutrient balances fueling the marine food web. An assessment of net and gross community production (NCP, GPP) and community respiration (CR) in 86 surface plankton communities sampled between 15° and 36° South along coastal Western Australia (WA) revealed a prevalence of net autotrophic metabolism (GPP/CR > 1), comprising 81% of the communities sampled. NCP, GPP, and CR decreased with decreasing nutrient and chlorophyll-a concentrations, from estuarine, to coastal and oceanic waters. CR, standardized per unit chlorophyll-a, increased with temperature, with higher activation energies (Ea) than GPP per unit chlorophyll-a (Ea 1.07 ± 0.18 eV and 0.65 ± 0.15 eV, respectively) either across ecosystem types and for coastal and estuary communities alone, indicating plankton CR to increase much faster with warming than GPP. These results characterize surface plankton communities across Western Australia as CO2 sinks, the stronger thermal-dependence of respiration that gross primary production rates suggests that their role may weaken with future warming.


2020 ◽  
Vol 19 (1) ◽  
Author(s):  
Zhongkang Li ◽  
Xiuqing Xin ◽  
Bin Xiong ◽  
Dongdong Zhao ◽  
Xueli Zhang ◽  
...  

Abstract Background CO2 is fixed by all living organisms with an autotrophic metabolism, among which the Calvin–Benson–Bassham (CBB) cycle is the most important and widespread carbon fixation pathway. Thus, studying and engineering the CBB cycle with the associated energy providing pathways to increase the CO2 fixation efficiency of cells is an important subject of biological research with significant application potential. Results In this work, the autotrophic microbe Ralstonia eutropha (Cupriavidus necator) was selected as a research platform for CBB cycle optimization engineering. By knocking out either CBB operon genes on the operon or mega-plasmid of R. eutropha, we found that both CBB operons were active and contributed almost equally to the carbon fixation process. With similar knock-out experiments, we found both soluble and membrane-bound hydrogenases (SH and MBH), belonging to the energy providing hydrogenase module, were functional during autotrophic growth of R. eutropha. SH played a more significant role. By introducing a heterologous cyanobacterial RuBisCO with the endogenous GroES/EL chaperone system(A quality control systems for proteins consisting of molecular chaperones and proteases, which prevent protein aggregation by either refolding or degrading misfolded proteins) and RbcX(A chaperone in the folding of Rubisco), the culture OD600 of engineered strain increased 89.2% after 72 h of autotrophic growth, although the difference was decreased at 96 h, indicating cyanobacterial RuBisCO with a higher activity was functional in R. eutropha and lead to improved growth in comparison to the host specific enzyme. Meanwhile, expression of hydrogenases was optimized by modulating the expression of MBH and SH, which could further increase the R. eutropha H16 culture OD600 to 93.4% at 72 h. Moreover, the autotrophic yield of its major industrially relevant product, polyhydroxybutyrate (PHB), was increased by 99.7%. Conclusions To our best knowledge, this is the first report of successfully engineering the CBB pathway and hydrogenases of R. eutropha for improved activity, and is one of only a few cases where the efficiency of CO2 assimilation pathway was improved. Our work demonstrates that R. eutropha is a useful platform for studying and engineering the CBB for applications.


mSystems ◽  
2020 ◽  
Vol 5 (5) ◽  
Author(s):  
Daniel E. Ross ◽  
Christopher W. Marshall ◽  
Djuna Gulliver ◽  
Harold D. May ◽  
R. Sean Norman

Acetogens are anaerobic bacteria capable of fixing CO2 or CO to produce acetyl-CoA and ultimately acetate using the Wood-Ljungdahl pathway (WLP). This autotrophic metabolism plays a major role in the global carbon cycle and, if harnessed, can help reduce greenhouse gas emissions. Overall, the data presented here provide a framework for examining the ecology and evolution of the Acetobacterium genus and highlight the potential of these species as a source for production of fuels and chemicals from CO2 feedstocks.


2020 ◽  
Author(s):  
Norio Kitadai ◽  
Ruhei Nakamura ◽  
Masahiro Yamamoto ◽  
Satoshi Okada ◽  
Wataru Takahagi ◽  
...  

<i></i>Thioester synthesis via CO2 fixation by CO dehydrogenase/acetyl-CoA synthase is among the most ancient autotrophic metabolism often suggested to have a prebiotic root. Here we demonstrate that, under an electrochemical condition realizable in early ocean hydrothermal systems, nickel sulfide (NiS) gradually reduces to Ni0, thereby drastically enhancing its capability of driving nonenzymatic CO2 fixation. It catalyzes CO2 electroreduction to CO, concentrates CO on the surface Ni0 sites, and promotes CO condensation to a thioester in the presence of methanethiol. Even greater CO-to-thioester reaction efficiency is realized with NiS coprecipitating with FeS or CoS. Considering the central role of Ni in the enzymatic process mentioned above, our demonstrated thioester synthesis by the partially electroreduced NiS could have a direct implication to the autotrophic origin of life.<br>


Sign in / Sign up

Export Citation Format

Share Document