An Improved Fish Trap

1889 ◽  
Vol 60 (20) ◽  
pp. 308-308
Keyword(s):  
1953 ◽  
Vol 15 (1) ◽  
pp. 36-38
Author(s):  
Reed S. Nielson
Keyword(s):  

Author(s):  
Vl. N. Shkura ◽  
◽  
A. V. Shevchenko ◽  

Purpose: development and description of the layout and design solution for a two-pond feeding nursery fish-breeding complex, which characterizes by compact placement of its constituent structures and their adaptation to the topographic conditions of the territory. Materials and methods. The theoretical and empirical basis for the development was made up of well-known recommendations on design and construction of pond complexes and survey data of operating fish-breeding facilities and their structures. During the development, the technologies of search design of engineering projects in compliance with fish breeding requirements and restrictions were used. Results. The fish-breeding complex includes: two fish-breeding ponds with a common dividing dam and a water supply system including a pumping station; water supply pipe system; a system of devices and structures that ensure the release of fish grown in ponds into a fish trap; spillway devices for discharging water from ponds and a fish trap with a set of regulating elements. Fish ponds are located on the floodplain lands of the river Don and are formed by protecting dikes. The bed of the reservoirs is planned with sections with longitudinal and transverse slopes to the water-fish collecting and-transporting ditches arranged in their bottom, allowing them to be emptied and the fish grown in the ponds to be directed to the outlet structures. The release of fish from the ponds is carried out by two tower water outlets. The design of the fish trap provides for the accumulation and seine fishing, it is equipped with means for regulating water discharge and maintaining conditions for fish. Conclusions. The developed layout and design solution for a two-pond fish-breeding complex with one fish trap is adapted to the local relief and the difference in water levels in ponds and in water intake. The implemented layout and design solutions can be used in the development of similar objects


2007 ◽  
Vol 43 (2) ◽  
pp. 126-139 ◽  
Author(s):  
Jae-Won Yoo ◽  
Man-Woo Lee ◽  
Chang-Gun Lee ◽  
Chang-Soo Kim ◽  
Jung-Soo Kim ◽  
...  

Copeia ◽  
1924 ◽  
pp. 57
Author(s):  
B. A. Bean
Keyword(s):  

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Peter Buš ◽  
Shi-Yen Wu ◽  
Ayça Tartar

This research investigates the notion of builders’ on-site engagement to physically build architectural interventions based on their demands, spatial requirements, and collaborative improvisation enhanced with the principles of uniqueness and bespoke solutions which are previously explored in computational models. The paper compares and discusses two physical installations as proto-architectural assemblies testing two different designs and building approaches: the top-down predefined designers’ scenario contrary to bottom-up unpredictable improvisation. It encompasses a building strategy based on the discrete precut components assembled by builders themselves in situ. The paper evaluates both strategies in a qualitative observation and comparison defining advantages and limitations of the top-down design strategy in comparison with the decentralised bottom-up building system built by the builders themselves. As such, it outlines the position of a designer within the bottom-up building processes on-site. The paper argues that improvisation and builders’ direct engagement on-site lead to solutions that better reflect human needs and low-tech building principles incorporated can deliver unpredictable but convenient spatial scenarios.


Sign in / Sign up

Export Citation Format

Share Document