long term trends
Recently Published Documents


TOTAL DOCUMENTS

2776
(FIVE YEARS 722)

H-INDEX

87
(FIVE YEARS 12)

Public Health ◽  
2022 ◽  
Vol 203 ◽  
pp. 47-52
Author(s):  
Z. Yu ◽  
D. Li ◽  
L. Sun ◽  
X. Zhao ◽  
H. Chang ◽  
...  

2022 ◽  
Vol 10 (1) ◽  
pp. 95
Author(s):  
Jaime Arriaga ◽  
Gabriela Medellin ◽  
Elena Ojeda ◽  
Paulo Salles

Video monitoring has become an indispensable tool to understand beach processes. However, the measurement accuracy derived from the images has been taken for granted despite its dependence on the calibration process and camera movements. An easy to implement self-fed image stabilization algorithm is proposed to solve the camera movements. Georeferenced images were generated from the stabilized images using only one calibration. To assess the performance of the stabilization algorithm, a second set of georeferenced images was created from unstabilized images following the accepted practice of using several calibrations. Shorelines were extracted from the images and corrected with the measured water level and the computed run-up to the 0 m contour. Image-derived corrected shorelines were validated with one hundred beach profile surveys measured during a period of four years along a 1.1 km beach stretch. The simultaneous high-frequency field data available of images and beach surveys are uncommon and allow assessing seasonal changes and long-term trends accuracy. Errors in shoreline position do not increase in time suggesting that the proposed stabilization algorithm does not propagate errors, despite the ever-evolving vegetation in the images. The image stabilization reduces the error in shoreline position by 40 percent, having a larger impact with increasing distance from the camera. Furthermore, the algorithm improves the accuracy on long-term trends by one degree of magnitude (0.01 m/year vs. 0.25 m/year).


MAUSAM ◽  
2022 ◽  
Vol 52 (4) ◽  
pp. 655-658
Author(s):  
O. P. SINGH

Long term trends in the frequencies of cyclonic disturbances (i.e. depressions and cyclonic storms) and the cyclonic storms forming over the Bay of Bengal and the Arabian Sea during the southwest monsoon season (June-September) have been studied utilizing 110 years data from 1890-1999. There have been significant decreasing trends in both the frequencies but the frequency of cyclonic disturbances has diminished at a faster rate. The trend analysis shows that the frequency of cyclonic disturbances has decreased at the rate of about six to seven disturbances per hundred years in the monsoon season. The frequency of cyclonic storms of monsoon season .has decreased at the rate of , one to two cyclones per hundred years.


2022 ◽  
Author(s):  
Xueli Liu ◽  
Liang Ran ◽  
Weili Lin ◽  
Xiaobin Xu ◽  
Zhiqiang Ma ◽  
...  

Abstract. Strict air pollution control strategies have been implemented in recent decades in the North China Plain (NCP), previously one of the most polluted regions in the world, and have resulted in considerable changes in emissions of air pollutants. However, little is so far known about the long-term trends of the regional background level of NOx and SO2, along with the increase and decrease processes of regional emissions. In this study, the seasonal and diurnal variations of NOx and SO2 as well as their long-term trends at a regional background station in the NCP were characterized from 2004 to 2016. On average, SO2 and NOx mixing ratios were 5.7 ± 8.4 ppb and 14.2 ± 12.4 ppb, respectively. The seasonal variations in SO2 and NOx mixing ratios showed a similar pattern with a peak in winter and a valley in summer. However, the diurnal variations in SO2 and NOx mixing ratios greatly differed for all seasons, indicating different sources for SO2 and NOx. Overall, the annual mean SO2 exhibited a significant decreasing trend of ‒6.1 % yr−1 (R = −0.84, P < 0.01) from 2004 to 2016, which is very close to −6.3 % yr−1 of the annual SO2 emission in Beijing, and a greater decreasing trend of −7.4 % yr−1 (R = −0.95, P < 0.01) from 2008 to 2016. The annual mean of NOx showed a fluctuating rise of +3.4 % yr−1 (R = 0.38, P = 0.40) from 2005 to 2010, reaching the peak value (16.9 ppb) in 2010, and then exhibited an extremely significant fluctuating downward trend of −4.5 % yr−1 (R = 0.95, P < 0.01) from 2010 to 2016. After 2010, the annual mean NOx mixing ratios correlated significantly (R = 0.94, P < 0.01) with the annual NOx emission in North China. The decreasing rate (−4.8 % yr−1, R = −0.92, P < 0.01) of the annual mean NOx mixing ratios from 2011 to 2016 at SDZ are lower than the one (−8.8 % yr−1, R = −0.94, P < 0.01) for the annual NOx emission in the NCP and (−9.0 % yr−1, R = −0.96, P < 0.01) in Beijing. It indicated that surface NOx mixing ratios at SDZ had weaker influence than SO2 by the emission reduction in Beijing and its surrounding areas in the NCP. The increase in the amount of motor vehicles led to an increase in traffic emissions for NOx. This study supported conclusions from previous studies that the measures taken for controlling NOx and SO2 in the NCP in the past decades were generally successful. However, NOx emission control should be strengthened in the future.


Atmosphere ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 110
Author(s):  
Jan Laštovička

There is not only space weather; there is also space climate. Space climate includes the ionospheric climate, which is affected by long-term trends in the ionosphere. One of the most important ionospheric parameters is the critical frequency of the ionospheric F2 layer, foF2, which corresponds to the maximum ionospheric electron density, NmF2. Observational data series of foF2 have been collected at some stations for as long as over 60 years and continents are relatively well covered by a network of ionosondes, instruments that measure, among others, foF2. Trends in foF2 are relatively weak. The main global driver of long-term trends in foF2 is the increasing concentration of greenhouse gases, namely CO2, in the atmosphere. The impact of the other important trend driver, the secular change in the Earth’s main magnetic field, is very regional, being positive in some regions, negative in others, and neither in the rest. There are various sources of uncertainty in foF2 trends. One is the inhomogeneity of long foF2 data series. The main driver of year-to-year changes in foF2 is the quasi-eleven-year solar cycle. The removal of its effect is another source of uncertainty. Different methods might provide somewhat different strengths among trends in foF2. All this is briefly reviewed in the paper.


Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 163
Author(s):  
Teresa Lo Feudo ◽  
Riccardo Alvise Mel ◽  
Salvatore Sinopoli ◽  
Mario Maiolo

Nearshore marine systems provide multiple economic and ecological services to human communities. Several studies addressing the climate change stressors and the inappropriate use of the sea indicate a decline of coastal areas. An extensive monitoring of the most important marine sites and protected areas is crucial to design effective environmental-friendly measures to support the sustainable development of coastal regions. A 70-year-long wave climate analysis is presented to study the climatology of the area belonging to the Marine Experimental Station of Capo Tirone, Italy. The analysis is based on the global atmospheric reanalysis developed by the European Centre for Medium-Range Weather Forecasts, validated through an observed buoy dataset recorded by the Italian Sea Wave Measurement Network. No significant long-term trends have been detected. The need to set up new monitoring stations has been pointed out by means of a hydrodynamic model developed at the regional scale, evaluating the effect of the local morphology on the nearshore wave climate and highlighting the importance of surveying the marine protected area of Capo Tirone located therein.


2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Kishore Kumar Jagadeesan ◽  
James Grant ◽  
Sue Griffin ◽  
Ruth Barden ◽  
Barbara Kasprzyk-Hordern

Abstract Background The objective of this work to calculate prescribed quantity of an active pharmaceutical ingredient (API) in prescription medications for human use, to facilitate research on the prediction of amount of API released to the environment and create an open-data tool to facilitate spatiotemporal and long-term prescription trends for wider usage. Design We have developed an R package, PrAna to calculate the prescribed quantity (in kg) of an APIs by postcode using England’s national level prescription data provided by National Health Service, for the years 2015–2018. Datasets generated using PrAna can be visualized in a real-time interactive web-based tool, PrAnaViz to explore spatiotemporal and long-term trends. The visualisations can be customised by selecting month, year, API, and region. Results PrAnaViz’s targeted API approach is demonstrated with the visualisation of prescribed quantities of 14 APIs in the Bath and North East Somerset (BANES) region during 2018. Once the APIs list is loaded, the back end retrieves relevant data and populates the graphs based on user-defined data features in real-time. These plots include the prescribed quantity of APIs over a year, by month, and individual API by month, general practice, postcode, and medicinal form. The non-targeted API approach is demonstrated with the visualisation of clarithromycin prescribed quantities at different postcodes in the BANES region. Conclusion PrAna and PrAnaViz enables the analysis of spatio-temporal and long-term trends with prescribed quantities of different APIs by postcode. This can be used as a support tool for policymakers, academics and researchers in public healthcare, and environmental scientist to monitor different group of pharmaceuticals emitted to the environment and for prospective risk assessment of pharmaceuticals in the environment.


2022 ◽  
Vol 22 (1) ◽  
pp. 47-63
Author(s):  
Guangjie Zheng ◽  
Hang Su ◽  
Siwen Wang ◽  
Andrea Pozzer ◽  
Yafang Cheng

Abstract. Aerosol acidity is a key parameter in atmospheric aqueous chemistry and strongly influences the interactions of air pollutants and the ecosystem. The recently proposed multiphase buffer theory provides a framework to reconstruct long-term trends and spatial variations in aerosol pH based on the effective acid dissociation constant of ammonia (Ka,NH3∗). However, non-ideality in aerosol droplets is a major challenge limiting its broad applications. Here, we introduced a non-ideality correction factor (cni) and investigated its governing factors. We found that besides relative humidity (RH) and temperature, cni is mainly determined by the molar fraction of NO3- in aqueous-phase anions, due to different NH4+ activity coefficients between (NH4)2SO4- and NH4NO3-dominated aerosols. A parameterization method is thus proposed to estimate cni at a given RH, temperature and NO3- fraction, and it is validated against long-term observations and global simulations. In the ammonia-buffered regime, with cni correction, the buffer theory can reproduce well the Ka,NH3∗ predicted by comprehensive thermodynamic models, with a root-mean-square deviation ∼ 0.1 and a correlation coefficient ∼ 1. Note that, while cni is needed to predict Ka,NH3∗ levels, it is usually not the dominant contributor to its variations, as ∼ 90 % of the temporal or spatial variations in Ka,NH3∗ are due to variations in aerosol water and temperature.


2022 ◽  
Vol 19 (1) ◽  
pp. 47-69
Author(s):  
Paula Maria Salgado-Hernanz ◽  
Aurore Regaudie-de-Gioux ◽  
David Antoine ◽  
Gotzon Basterretxea

Abstract. We estimated pelagic primary production (PP) in the coastal (<200 m depth) Mediterranean Sea from satellite-borne data, its contribution to basin-scale carbon fixation, its variability, and long-term trends during the period 2002–2016. Annual coastal PP was estimated at 0.041 Gt C, which approximately represents 12 % of total carbon fixation in the Mediterranean Sea. About 51 % of this production occurs in the eastern basin, whereas the western and Adriatic shelves contribute with ∼25 % each of total coastal production. Strong regional variability is revealed in coastal PP, from high-production areas (>300 g C m−2) associated with major river discharges to less productive provinces (<50 g C m−2) located in the southeastern Mediterranean. PP variability in the Mediterranean Sea is dominated by interannual variations, but a notable basin-scale decline (17 %) has been observed since 2012 concurring with a period of increasing sea surface temperatures in the Mediterranean Sea and positive North Atlantic Oscillation and Mediterranean Oscillation climate indices. Long-term trends in PP reveal slight declines in most coastal areas (−0.05 to −0.1 g C m−2 per decade) except in the Adriatic where PP increases at +0.1 g C m−2 per decade. Regionalization of coastal waters based on PP seasonal patterns reveals the importance of river effluents in determining PP in coastal waters that can regionally increase up to 5-fold. Our study provides insight into the contribution of coastal waters to basin-scale carbon balances in the Mediterranean Sea while highlighting the importance of the different temporal and spatial scales of variability.


Sign in / Sign up

Export Citation Format

Share Document