scholarly journals Cocaine Dependence and D2 Receptor Availability in the Functional Subdivisions of the Striatum: Relationship with Cocaine-Seeking Behavior

2004 ◽  
Vol 29 (6) ◽  
pp. 1190-1202 ◽  
Author(s):  
Diana Martinez ◽  
Allegra Broft ◽  
Richard W Foltin ◽  
Mark Slifstein ◽  
Dah-Ren Hwang ◽  
...  
2004 ◽  
Vol 29 (9) ◽  
pp. 1763-1763 ◽  
Author(s):  
Diana Martinez ◽  
Allegra Broft ◽  
Richard W Foltin ◽  
Mark Slifstein ◽  
Dah-Ren Hwang ◽  
...  

2021 ◽  
Vol 09 ◽  
Author(s):  
Kenneth Blum ◽  
Mark S Gold ◽  
Jean L. Cadet ◽  
David Baron ◽  
Abdalla Bowirrat ◽  
...  

Background: Repeated cocaine administration changes histone acetylation and methylation on Lys residues and Deoxyribonucleic acid (DNA) within the nucleus accumbens (NAc). Recently Nestler’s group explored histone Arg (R) methylation in reward processing models. Damez-Werno et al. (2016) reported that during investigator and selfadministration experiments, the histone mark protein-R-methyltransferase-6 (PRMT6) and asymmetric dimethylation of R2 on histone H3 (H3R2me2a) decreased in the rodent and cocaine-dependent human NAc. Overexpression of PRMT6 in D2-MSNs in all NAc neurons increased cocaine seeking, whereas PRMT6 overexpression in D1-MSNs protects against cocaine-seeking. Hypothesis: Hypothesizing that dopaminylation (H3R2me2a binding) occurs in psychostimulant use disorder (PSU), and the binding inhibitor Srcin1, like the major DRD2 A2 allelic polymorphism, protects against psychostimulant seeking behavior by normalizing nucleus accumbens (NAc) dopamine expression. Discussion: Numerous publications confirmed the association between the DRD2 Taq A1 allele (30-40 lower D2 receptor numbers) and severe cocaine dependence. Lepack et al. (2020) found that acute cocaine increases dopamine in NAc synapses, results in histone H3 glutamine 5 dopaminylation (H3Q5dop), and consequent inhibition of D2 expression. The inhibition increases with chronic cocaine use and accompanies cocaine withdrawal. They also found that the Src kinase sig-naling inhibitor 1 (Srcin1 or p140CAP) during cocaine withdrawal reduced H3R2me2a binding. Consequently, this inhibited dopaminylation induced a “homeostatic brake.” Conclusion: The decrease in Src signaling in NAc D2-MSNs, like the DRD2 Taq A2 allele, a well-known genetic mechanism protective against SUD normalized nucleus accumbens (NAc) dopamine expression and decreased cocaine reward and motivation to self-administer cocaine. The Srcin1 may be an important therapeutic target.


2017 ◽  
Author(s):  
Alessandra Matzeu ◽  
Rémi Martin-Fardon

ABSTRACTHypothalamic orexin (Orx) neurons that project to the paraventricular nucleus of the thalamus (PVT) have received growing interest because of their role in drug-seeking behavior. When injected in the posterior PVT (pPVT), OrxA reinstated extinguished cocaine-seeking behavior in rats that had long access (LgA) to cocaine for 6 h/day after an intermediate period of abstinence (I-Abst, 2-3 weeks). Considering the long-lasting nature of drug-seeking behavior and that the PVT sends projections to the hypothalamus, the present study examined whether (i) OrxA’s priming effect is preserved after a period of protracted abstinence (P-Abst, 4-5 weeks) in LgA rats and (ii) the neural activation pattern (i.e., Fos+ and Fos+/Orx+ cells) in the lateral hypothalamus (LH), dorsomedial hypothalamus (DMH), and perifornical area (PFA) following intra-pPVT OrxA administration that may explain OrxA-induced reinstatement in LgA animals. As reported previously, OrxA administration in the pPVT triggered cocaine-seeking behavior after I-Abst. With P-Abst, the priming effect of OrxA was absent. An intra-pPVT injection of OrxA produced a strong increase in neuronal activation (i.e., Fos expression) in the LH/DMH/PFA at I-Abst but not at P-Abst. The analysis of the activation (Fos+) of Orx neurons (Orx+) revealed an increase in Fos+/Orx+ expression in the LH/DMH/PFA at I-Abst only, thus paralleling the behavioral data. These data indicate that shortly after abstinence, PVT↔LH/DMH/PFA connections are strongly recruited in animals with a history of cocaine dependence. The lack of effect at P-Abst suggests that the function of Orx receptors and connectivity of the PVT↔LH/DMH/PFA circuit undergo significant neuroadaptations following P-Abst.SIGNIFICANCE STATEMENTA better understanding of the pathophysiological changes associated with cocaine addiction is needed to develop efficient pharmacotherapies. The paraventricular nucleus of the thalamus (PVT) and orexin (Orx) transmission within the PVT have been implicated in maladaptive (compulsive) behavior that is characteristic of drug addiction. The present study shows OrxA injections in the posterior PVT reinstates cocaine-seeking behavior in animals with a history of cocaine dependence, and this effect disappears after protracted abstinence, paralleled by the neuronal activation pattern in the hypothalamus. In subjects with a history of cocaine dependence, the function of Orx receptors and connectivity of the PVT↔ LH/DMH/PFA circuit undergo significant neuroadaptations.


2021 ◽  
Vol 15 ◽  
Author(s):  
Alessandra Matzeu ◽  
Rémi Martin-Fardon

Hypothalamic orexin (Orx) projections to the paraventricular nucleus of the thalamus (PVT) have received growing interest because of their role in drug-seeking behavior. Using an established model of cocaine dependence (i.e., long access [LgA] to cocaine), we previously showed that OrxA injections in the posterior PVT (pPVT) reinstated extinguished cocaine-seeking behavior in rats after an intermediate period of abstinence (2–3 weeks). Considering the long-lasting nature of drug-seeking behavior, the present study examined whether the priming effect of intra-pPVT OrxA administration was preserved after a period of protracted abstinence (4–5 weeks) in rats that self-administered cocaine under LgA conditions. Furthermore, to better understand whether a history of cocaine dependence affects the Orx system—particularly the hypothalamic Orx↔pPVT connection—the number of Orx-expressing cells in the lateral hypothalamus (LH), dorsomedial hypothalamus (DMH), and perifornical area (PFA) and number of orexin receptor 1 (OrxR1)- and OrxR2-expressing cells in the pPVT were quantified. Orexin A administration in the pPVT induced cocaine-seeking behavior after intermediate abstinence, as reported previously. At protracted abstinence, however, the priming effect of OrxA was absent. A higher number of cells that expressed Orx was observed in the LH/DMH/PFA at both intermediate and protracted abstinence. In the pPVT, the number of OrxR2-expressing cells was significantly higher only at intermediate abstinence, with no changes in the number of OrxR1-expressing cells. These data build on our previous findings that the hypothalamic Orx↔pPVT connection is strongly recruited shortly after cocaine abstinence and demonstrate that the priming effect of OrxA is not long lasting. Furthermore, these findings suggest that throughout abstinence, the Orx↔pPVT connection undergoes neuroadaptive changes, reflected by alterations of the number of OrxR2-expressing cells in the pPVT.


Author(s):  
Anna Kruyer ◽  
Jeffrey Parrilla-Carrero ◽  
Courtney Powell ◽  
Lasse Brandt ◽  
Stefan Gutwinski ◽  
...  

AbstractAntipsychotic-induced dopamine supersensitivity, or behavioral supersensitivity, is a problematic consequence of long-term antipsychotic treatment characterized by the emergence of motor abnormalities, refractory symptoms, and rebound psychosis. The underlying mechanisms are unclear and no approaches exist to prevent or reverse these unwanted effects of antipsychotic treatment. Here we demonstrate that behavioral supersensitivity stems from long-lasting pre, post and perisynaptic plasticity, including insertion of Ca2+-permeable AMPA receptors and loss of D2 receptor-dependent inhibitory postsynaptic currents (IPSCs) in D2 receptor-expressing medium spiny neurons (D2-MSNs) in the nucleus accumbens core (NAcore). The resulting hyperexcitability, prominent in a subpopulation of D2-MSNs (21%), caused locomotor sensitization to cocaine and was associated with behavioral endophenotypes of antipsychotic treatment resistance and substance use disorder, including disrupted extinction learning and augmented cue-induced cocaine-seeking behavior. Chemogenetic restoration of IPSCs in D2-MSNs in the NAcore was sufficient to prevent antipsychotic-induced supersensitivity, pointing to an entirely novel therapeutic direction for overcoming this condition.


Author(s):  
Zhanglei Dong ◽  
Bingwu Huang ◽  
Chenchen Jiang ◽  
Jiangfan Chen ◽  
Han Lin ◽  
...  

AbstractPropofol has shown strong addictive properties in rats and humans. Adenosine A2A receptors (A2AR) in the nucleus accumbens (NAc) modulate dopamine signal and addictive behaviors such as cocaine- and amphetamine-induced self-administration. However, whether A2AR can modulate propofol addiction remains unknown. AAV-shA2AR was intra-NAc injected 3 weeks before the propofol self-administration training to test the impacts of NAc A2AR on establishing the self-administration model with fixed ratio 1 (FR1) schedule. Thereafter, the rats were withdrawal from propofol for 14 days and tested cue-induced reinstatement of propofol seeking behavior on day 15. The propofol withdrawal rats received one of the doses of CGS21680 (A2AR agonist, 2.5–10.0 ng/site), MSX-3 (A2AR antagonist, 5.0–20.0 μg/site) or eticlopride (D2 receptor (D2R) antagonist, 0.75–3.0 μg/site) or vehicle via intra-NAc injection before relapse behavior test. The numbers of active and inactive nose-poke response were recorded. Focal knockdown A2AR by shA2AR did not affect the acquisition of propofol self-administration behavior, but enhance cue-induced reinstatement of propofol self-administration compared with the AAV-shCTRLgroup. Pharmacological activation of the A2AR by CGS21680 (≥ 5.0 ng/site) attenuated cue-induced reinstatement of propofol self-administration behavior. Similarly, pharmacological blockade of D2R by eticlopride (0.75–3.0 μg/site) attenuated propofol seeking behavior. These effects were reversed by the administration of MSX-3 (5.0–20.0 μg/site). The A2AR- and D2R-mediated effects on propofol relapse were not confounded by the learning process, and motor activity as the sucrose self-administration and locomotor activity were not affected by all the treatments. This study provides genetic and pharmacological evidence that NAc A2AR activation suppresses cue-induced propofol relapse in rats, possibly by interacting with D2R.


2009 ◽  
Vol 14 (4) ◽  
pp. 419-430 ◽  
Author(s):  
Nathan S. Pentkowski ◽  
Jazmin I. Acosta ◽  
Jenny R. Browning ◽  
Elizabeth C. Hamilton ◽  
Janet L. Neisewander

Sign in / Sign up

Export Citation Format

Share Document