orexin a
Recently Published Documents


TOTAL DOCUMENTS

948
(FIVE YEARS 179)

H-INDEX

70
(FIVE YEARS 5)

Author(s):  
Marc Ten-Blanco ◽  
África Flores ◽  
Inmaculada Pereda-Pérez ◽  
Fabiana Piscitelli ◽  
Cristina Izquierdo-Luengo ◽  
...  

Background and purpose: Anxiety is often characterized by an inability to extinguish learned fear responses. Orexins/hypocretins are involved in the modulation of aversive memories, and dysregulation of this system may contribute to the aetiology of anxiety disorders characterized by pathological fear. The mechanisms by which orexins regulate fear remain unknown. Experimental approach: We investigated the role of the endogenous cannabinoid system in the impaired fear extinction induced by orexin-A (OXA) in male mice. Behavioural pharmacology, neurochemical, molecular and genetic approaches were used. Key results: The selective inhibitor of 2-arachidonoylglycerol (2-AG) biosynthesis O7460 abolished the fear extinction deficits induced by OXA. Accordingly, increased 2-AG levels were observed in the amygdala and hippocampus of mice treated with OXA that do not extinguish fear, suggesting that high levels of this endocannabinoid are related to poor extinction. Impairment of fear extinction induced by OXA was associated with increased expression of CB2 cannabinoid receptor (CB2R) in microglial cells of the basolateral amygdala. Consistently, the intra-amygdala infusion of the CB2R antagonist AM630 completely blocked the impaired extinction promoted by OXA. Microglial and CB2R expression depletion in the amygdala with PLX5622 chow also prevented these extinction deficits. Conclusions and implications: We reveal that overactivation of the orexin system leads to impaired fear extinction through 2-AG and amygdalar CB2R. This novel mechanism may pave the way towards novel potential approaches to treat diseases associated with inappropriate retention of fear, such as post-traumatic stress disorder, panic anxiety and phobias.


2021 ◽  
Vol 53 ◽  
pp. S285-S286
Author(s):  
C. Moya-Lacasa ◽  
L. González-Blanco ◽  
C.M. Álvarez-Vázquez ◽  
E. Martín-Gil ◽  
C. Martínez-Cao ◽  
...  
Keyword(s):  

2021 ◽  
Vol 12 ◽  
Author(s):  
Jinghuan Gan ◽  
Zhichao Chen ◽  
Jiuyan Han ◽  
Lingyun Ma ◽  
Shuai Liu ◽  
...  

BackgroundAbnormal orexin-A levels in cerebrospinal fluid (CSF) have been identified in Alzheimer’s disease (AD) and other neurodegenerative diseases. However, few studies have focused on Lewy body disease (LBD) and often with debatable outcomes. Thus, we performed this systematic review and meta-analysis to investigate orexin-A levels in LBD by incorporating data from different studies.MethodsWe gathered studies comparing orexin-A levels in patients with LBD and controls (including healthy controls and other dementia subtypes). In the initial search, 117 relevant articles were identified. After a selection process, seven studies, conducted in Japan, USA, Spain, Switzerland, France, Italy, and Netherlands, were chosen.ResultsIn total, 179 patients with LBD and 253 controls were included. Patients with LBD had significantly lower mean orexin-A CSF levels when compared with patients with AD [standard mean difference (SMD): −0.35, 95% confidence interval (CI): −0.70 to −0.00, Z = 1.96, P = 0.05], whereas mean orexin-A levels were significantly higher when compared with patients with frontotemporal lobar degeneration (FTLD) (SMD: 0.61, 95% CI: 0.23–0.99, Z = 3.12, P = 0.002). Orexin-A CSF levels in LBD patients were approximately equal to levels in healthy elderly individuals, whereas they were significantly decreased in LBD patients with excessive daytime sleepiness (EDS) (SMD: -0.15, 95% CI: -0.59 to 0.29, Z = 0.67, P = 0.50).ConclusionsWe showed that orexin-A levels in patients with LBD were not very different from those in normal elderly individuals, whereas they were lower than those in AD patients and higher than those in FTLD patients. The influence of hypersomnia on orexin-A levels should be carefully interpreted.Systematic Review Registrationhttps://www.crd.york.ac.uk/prospero/, identifier CRD42021265900.


2021 ◽  
Vol 143 ◽  
pp. 112141
Author(s):  
Ying-Jie Dong ◽  
Ning-Hua Jiang ◽  
Liang-Hui Zhan ◽  
Xi Teng ◽  
Xi Fang ◽  
...  
Keyword(s):  
Hpa Axis ◽  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rohan Umesh Parekh ◽  
Acacia White ◽  
Korin E. Leffler ◽  
Vinicia C. Biancardi ◽  
Jeffrey B. Eells ◽  
...  

AbstractBrain orexin system hyperactivity contributes to neurogenic hypertension. We previously reported upregulated neuronal kinin B1 receptor (B1R) expression in hypertension. However, the role of central B1R activation on the orexin system in neurogenic hypertension has not been examined. We hypothesized that kinin B1R contributes to hypertension via upregulation of brain orexin-arginine vasopressin signaling. We utilized deoxycorticosterone acetate (DOCA)-salt hypertension model in wild-type (WT) and B1R knockout (B1RKO) mice. In WT mice, DOCA-salt-treatment increased gene and protein expression of orexin A, orexin receptor 1, and orexin receptor 2 in the hypothalamic paraventricular nucleus and these effects were attenuated in B1RKO mice. Furthermore, DOCA-salt- treatment increased plasma arginine vasopressin levels in WT mice, but not in B1RKO mice. Cultured primary hypothalamic neurons expressed orexin A and orexin receptor 1. B1R specific agonist (LDABK) stimulation of primary neurons increased B1R protein expression, which was abrogated by B1R selective antagonist R715 but not by the dual orexin receptor antagonist, ACT 462206, suggesting that B1R is upstream of the orexin system. These data provide novel evidence that B1R blockade blunts orexin hyperactivity and constitutes a potential therapeutic target for the treatment of salt-sensitive hypertension.


Author(s):  
Önder Öztürk ◽  
Defne Cebeci ◽  
Uğur Şahin ◽  
Eda Evgen Tülüceoğlu ◽  
Nilüfer Şahin Calapoğlu ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Nicola Forte ◽  
Serena Boccella ◽  
Lea Tunisi ◽  
Alba Clara Fernández-Rilo ◽  
Roberta Imperatore ◽  
...  

AbstractThe mammalian brain stores and distinguishes among episodic memories, i.e. memories formed during the personal experience, through a mechanism of pattern separation computed in the hippocampal dentate gyrus. Decision-making for food-related behaviors, such as the choice and intake of food, might be affected in obese subjects by alterations in the retrieval of episodic memories. Adult neurogenesis in the dentate gyrus regulates the pattern separation. Several molecular factors affect adult neurogenesis and exert a critical role in the development and plasticity of newborn neurons. Orexin-A/hypocretin-1 and downstream endocannabinoid 2-arachidonoylglycerol signaling are altered in obese mice. Here, we show that excessive orexin-A/2-arachidonoylglycerol/cannabinoid receptor type-1 signaling leads to the dysfunction of adult hippocampal neurogenesis and the subsequent inhibition of plasticity and impairment of pattern separation. By inhibiting orexin-A action at orexin-1 receptors we rescued both plasticity and pattern separation impairment in obese mice, thus providing a molecular and functional mechanism to explain alterations in episodic memory in obesity.


Sign in / Sign up

Export Citation Format

Share Document