scholarly journals Existence of G-quadruplex structures in promoter region of oncogenes confirmed by G-quadruplex DNA cross-linking strategy

2013 ◽  
Vol 3 (1) ◽  
Author(s):  
Libo Yuan ◽  
Tian Tian ◽  
Yuqi Chen ◽  
Shengyong Yan ◽  
Xiwen Xing ◽  
...  
2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Libo Yuan ◽  
Tian Tian ◽  
Yuqi Chen ◽  
Shengyong Yan ◽  
Xiwen Xing ◽  
...  

2016 ◽  
Vol 52 (92) ◽  
pp. 13511-13514 ◽  
Author(s):  
Zoë A. E. Waller ◽  
Benjamin J. Pinchbeck ◽  
Bhovina Seewoodharry Buguth ◽  
Timothy G. Meadows ◽  
David J. Richardson ◽  
...  

Ligand-specific control of nitrate assimilation inParacoccus denitrificansby stabilization of DNA G-quadruplex in the promoter region ofnas.


2010 ◽  
Vol 2010 ◽  
pp. 1-9 ◽  
Author(s):  
Narayana Nagesh ◽  
Varun K. Sharma ◽  
A. Ganesh Kumar ◽  
Edwin A. Lewis

C-myc and Bcl2 are well characterized oncogenes that are capable of forming G-quadruplex structures. Promoter regions of C-myc and Bcl2 forming G-quadruplex structures are chemically synthesized and G-quadruplex structure is formed in presence of 100 mM potassium ion. Three different porphyrin drugs, namely TMPyP2, TMPyP3, and TMPyP4 are allowed to interact with quadruplex DNA complex and the site and nature of interaction are studied. Drug interactions with quadruplex DNA were carried out in different potassium ionic strengths using fluorescence spectroscopy. It is found that fluorescence hypochromicity decreases with an increase in ionic strength in the case of TMPyP4, TMPyP3, and TMPyP2. Fluorescence titration studies and Job plots indicate that four molecules of TMPyP4, two molecules of TMPyP3 and TMPyP2 are interacting with one molecule of quadruplex DNA.


2020 ◽  
Vol 56 (63) ◽  
pp. 8940-8943 ◽  
Author(s):  
Aisling Minard ◽  
Danielle Morgan ◽  
Federica Raguseo ◽  
Anna Di Porzio ◽  
Denise Liano ◽  
...  

G-quadruplexes are nucleic-acids secondary structures that are highly abundant in the human genome. In this work,we identified a short-peptide that displays selectivity for the G-quadruplex formed in the promoter region of the oncogene c-MYC.


2013 ◽  
Vol 126 (4) ◽  
pp. 1012-1016 ◽  
Author(s):  
Daniela Verga ◽  
Florian Hamon ◽  
Florent Poyer ◽  
Sophie Bombard ◽  
Marie-Paule Teulade-Fichou

2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Narayana Nagesh ◽  
Arumugam Ganesh Kumar

Oncogenes are rich in guanine and capable of forming quadruplex structure. Promoter regions oncogenes such as Bcl2 and KRAS NHPPE are rich in guanine content and they can form quadruplex structures. Alterations in the mode and nature of molecular binding to DNA, certainly has effect on the posttranscriptional activities. Recent experiments indicate that structure of quadruplex complex and ligand has predominant role on ligand-quadruplex DNA interaction. In order to understand the nature of each ligand interaction with quadruplex DNA, Bcl2, KRAS NHPPE quadruplex DNA interaction with three porphyrin was studied using spectroscopy, microcalorimetry and mass spectrometry. Our studies, indicate that mode of ligand interaction varies with structure, environment and concentration of ligand. Fluorescence quenching experiments show that TMPyP4 interaction is ligand concentration dependent. Job plots and ITC experiments demonstrate that four molecules of TMPyP4 and two molecules of TMPyP3, TMPyP2 interact with each quadruplex complex. Through ITC titrations, ligand binding constant are higher for TMPyP4 (≈107 M−1) compared to TMPyP3, TMPyP2 (≈105 M−1). ESI-MS experiments confirm the stoichiometry of TMPyP4 : 39Bcl2 is 4 : 1 at saturation and it is 2 : 1 in case of KRAS NHPPE quadruplex.


2013 ◽  
Vol 53 (4) ◽  
pp. 994-998 ◽  
Author(s):  
Daniela Verga ◽  
Florian Hamon ◽  
Florent Poyer ◽  
Sophie Bombard ◽  
Marie-Paule Teulade-Fichou

2020 ◽  
Vol 27 (1) ◽  
pp. 154-169 ◽  
Author(s):  
Claudiu N. Lungu ◽  
Bogdan Ionel Bratanovici ◽  
Maria Mirabela Grigore ◽  
Vasilichia Antoci ◽  
Ionel I. Mangalagiu

Lack of specificity and subsequent therapeutic effectiveness of antimicrobial and antitumoral drugs is a common difficulty in therapy. The aim of this study is to investigate, both by experimental and computational methods, the antitumoral and antimicrobial properties of a series of synthesized imidazole-pyridine derivatives. Interaction with three targets was discussed: Dickerson-Drew dodecamer (PDB id 2ADU), G-quadruplex DNA string (PDB id 2F8U) and DNA strain in complex with dioxygenase (PDB id 3S5A). Docking energies were computed and represented graphically. On them, a QSAR model was developed in order to further investigate the structure-activity relationship. Results showed that synthesized compounds have antitumoral and antimicrobial properties. Computational results agreed with the experimental data.


2017 ◽  
Vol 22 (44) ◽  
pp. 6612-6624 ◽  
Author(s):  
Graziella Cimino-Reale ◽  
Nadia Zaffaroni ◽  
Marco Folini

Sign in / Sign up

Export Citation Format

Share Document