scholarly journals Ecosystem Composition Controls the Fate of Rare Earth Elements during Incipient Soil Genesis

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Dragos G. Zaharescu ◽  
Carmen I. Burghelea ◽  
Katerina Dontsova ◽  
Jennifer K. Presler ◽  
Raina M. Maier ◽  
...  
2016 ◽  
Author(s):  
Dragos G Zaharescu ◽  
Carmen I Burghelea ◽  
Katerina Dontsova ◽  
Jennifer K Presler ◽  
Raina M Maier ◽  
...  

The rare earth elements (REE) are of increasing importance in a variety of science and economic fields, including (bio)geosciences, paleoecology, astrobiology, and mining. Despite their great promise, REE fractionation in early plant-microbe-rock systems has largely remained elusive. We tested the hypothesis that REE mass-partitioning during the incipient weathering of basalt, rhyolite, granite and schist depends on the activity of microbes, plant, and arbuscular mycorrhiza. Pore-water element abundances reflected a rapid transition from abiotic to biotic weathering, the latter associated with lower aqueous loss and higher uptake. Abiotic dissolution contributed 38.6+/-19% to total denudation. Microbes incremented denudation, particularly in rhyolite, this effect associating with decreased bioavailable solid fractions in this rock. Total mobilization (aqueous+uptake) was ten times greater in planted treatments compared to abiotic control, REE masses in plant generally exceeding those in water. Plants of larger biomass further increased solid fractions, consistent with soil genesis. Mycorrhiza had a generally positive effect on total mobilization. The incipient REE weathering was dominated by inorganic dissolution enhanced by biotic respiration, the patterns of denudation largely dictated by mineralogy. A consistent biotic signature was observed in La:phosphate, mobilization:solid fraction in all rocks, as well as in the general pattern of denudation and uptake.


1962 ◽  
Vol 18 (4) ◽  
pp. 1127-1153
Author(s):  
V FASSEL ◽  
R CURRY ◽  
R KNISELEY

2020 ◽  
Vol 4 (2) ◽  
pp. 599-604
Author(s):  
Michael A. Onoja ◽  
P. H. Bukar ◽  
C. U. Omeje ◽  
A. M. Adamu

Instrumental neutron activation analysis (INAA) technique was used to investigate the abundance and distribution of rare earth elements (REE) in soil around Kaduna Refinery. The aim of the study is to assess the rare elements potential of Nigeria for economic exploitation. Five REEs (La, Dy, Eu, Yb, and Lu) were detected in varying concentrations ranging from a minimum of 0.6 µg/g (Lu) to a maximum of 249.0 µg/g (La). The elements existed with trends consistent with the natural pattern of REEs in soil, showing significant Eu and Dy anomalies which characterize upper plains and flood plains. The levels of REEs in soil in the study area were generally slightly above background levels, with minimal (La, Dy, and Eu), moderate (Yb), and significant (Lu) enrichments and trending: Lu ˃Yb ˃ Eu ˃ Dy ˃ La. The abundance of the REEs investigated cannot establish a potential of Nigeria for economic exploitation of the mineral, hence, rare earth project in the study area is not viable at the moment.


1986 ◽  
Author(s):  
Ingeborg Hinz ◽  
Peter Kuhn ◽  
Ursula Vetter ◽  
Eberhard Warkentin

1989 ◽  
Author(s):  
Hiltrud Hein ◽  
Claus Koeppel ◽  
Ursula Vetter ◽  
Eberhard Warkentin

Sign in / Sign up

Export Citation Format

Share Document