Self-assembly of a three-dimensional network from two-dimensional layers via metallic spacers: the (3,4)-connected frame of [Ag3(hmt)2][ClO4]3·2H 2O (hmt = hexamethylenetetramine)

1997 ◽  
pp. 631-632 ◽  
Author(s):  
Lucia Carlucci ◽  
Gianfranco Ciani ◽  
Dorothea W. v. Gudenberg ◽  
Davide M. Proserpio ◽  
Angelo Sironi

Author(s):  
Shan-Shan Liu ◽  
Shuai Yuan ◽  
Hai-Feng Lu ◽  
Meng-Zhen Xu ◽  
Di Sun

The cation-templated self-assembly of 1,4-bis(2-methyl-1H-imidazol-1-yl)butane (bmimb) with CuSCN gives rise to a novel two-dimensional network, namelycatena-poly[2,2′-dimethyl-1,1′-(butane-1,4-diyl)bis(1H-imidazol-3-ium) [tetra-μ2-thiocyanato-κ4S:S;κ4S:N-dicopper(I)]], {(C12H20N4)[Cu2(NCS)4]}n. The CuIcation is four-coordinated by one N and three S atoms, giving a tetrahedral geometry. One of the two crystallographically independent SCN−anions acts as a μ2-S:Sbridge, binding a pair of CuIcations into a centrosymmetric [Cu2(NCS)2] subunit, which is further extended into a two-dimensional 44-sql net by another kind of SCN−anion with an end-to-end μ2-S:Ncoordination mode. Interestingly, each H2bmimb dication, lying on an inversion centre, threads through one of the windows of the two-dimensional 44-sql net, giving a pseudorotaxane-like structure. The two-dimensional 44-sql networks are packed into the resultant three-dimensional supramolecular framework through bmimb–SCN N—H...N hydrogen bonds.



2013 ◽  
Vol 699 ◽  
pp. 40-45
Author(s):  
Chee Hun Kwak ◽  
Mee Chang ◽  
Min Chul Chung

Self-assembly of polyazamacricyclic complexes of copper(II), [Cu(H2L1]4+, where L1 = 1,8-bis(2-aminoethyl)-1,3,6,8,13-hexaazacyclotetradecane, and [Cu(H2L2)]2+, where L2 = 1,8-bis(4-butylic acid)-1,3,6,8,13-hexaazacyclotetradecane, [Ni(CN)4]2- produces two-dimensional permanent ring structure (1) and three-dimensional network structure (2), respectively, in crystalline solid. The geometry around copper(II) ion is an z-elongated octahedron (1) and square pyramid (2). Inter molecular hydrogen bonding of 1 produces one-dimensional ring chain and 2 produces one-dimensional zig-zag shape coordination polymer. Hydrogen bonding of neighboring chains of 1 produces two-dimensional permanent ring structure with a nanoscale area and that of 2 produces three-dimensional network structure having one-dimensional channels with nanoscale cross-section in crystalline solid.



2012 ◽  
Vol 1 (3) ◽  
pp. 396-399 ◽  
Author(s):  
Mottakin M. Abul Kashem ◽  
Debabrata Patra ◽  
Jan Perlich ◽  
André Rothkirch ◽  
Adeline Buffet ◽  
...  


2012 ◽  
Vol 68 (6) ◽  
pp. o1601-o1602 ◽  
Author(s):  
Fadila Berrah ◽  
Sofiane Bouacida ◽  
Hayet Anana ◽  
Thierry Roisnel

The asymmetric unit includes two crystallographically independent equivalents of the title salt, C6H7N2O2 +·ClO4 −. The cations and anions form separate layers alternating along the c axis, which are linked by N—H...O, O—H...O and C—H...O hydrogen bonds into a two-dimensional network parallel to (100). Further C—H...O contacts connect these layers, forming a three-dimensional network, in which R 4 4(20) rings and C 2 2(11) infinite chains can be identified.



2009 ◽  
Vol 65 (3) ◽  
pp. m139-m142 ◽  
Author(s):  
Rajesh Koner ◽  
Israel Goldberg

The title compound, (5,10,15,20-tetra-4-pyridylporphyrinato)zinc(II) 1,2-dichlorobenzene disolvate, [Zn(C40H24N8)]·2C6H4Cl2, contains a clathrate-type structure. It is composed of two-dimensional square-grid coordination networks of the self-assembled porphyrin moiety, which are stacked one on top of the other in a parallel manner. The interporphyrin cavities of the overlapping networks combine into channel voids accommodated by the dichlorobenzene solvent. Molecules of the porphyrin complex are located on crystallographic inversion centres. The observed two-dimensional assembly mode of the porphyrin units represents a supramolecular isomer of the unique three-dimensional coordination frameworks of the same porphyrin building block observed earlier. The significance of this study lies in the discovery of an additional supramolecular isomer of the rarely observed structures of metalloporphyrins self-assembled directly into extended coordination polymers without the use of external ligand or metal ion auxiliaries.





Nano Letters ◽  
2011 ◽  
Vol 11 (6) ◽  
pp. 2533-2537 ◽  
Author(s):  
C.-H. Chang ◽  
L. Tian ◽  
W. R. Hesse ◽  
H. Gao ◽  
H. J. Choi ◽  
...  


IUCrData ◽  
2019 ◽  
Vol 4 (1) ◽  
Author(s):  
Kai-Long Zhong ◽  
Guo-Qing Cao ◽  
Wei Song ◽  
Chao Ni

In the complex cation of the title salt, [Co(C12H8N2)3](C10H5O8)2·H2O, the CoII cation is situated on a twofold rotation axis and is coordinated in a distorted octahedral manner by six N atoms from three chelating 1,10-phenanthroline (phen) ligands. In the crystal, the non-coordinating 2,4,5-tricarboxybenzoate anions interact with each other via O—H...O hydrogen bonds, generating a two-dimensional network parallel to (100). Adjacent sheets are connected by waterO—H...Ocarboxylate hydrogen bonds, resulting in a three-dimensional network structure that surrounds the complex cations.



2009 ◽  
Vol 65 (3) ◽  
pp. m118-m120
Author(s):  
Olha Sereda ◽  
Helen Stoeckli-Evans

The title coordination polymer, [Cd3Co2(CN)12(C2H8N2)4]n, has an infinite two-dimensional network structure. The asymmetric unit is composed of two crystallographically independent CdIIatoms, one of which is located on a twofold rotation axis. There are two independent ethylenediamine (en) ligands, one of which bis-chelates to the Cd atom that sits in a general position, while the other bridges this Cd atom to that sitting on the twofold axis. The Cd atom located on the twofold rotation axis is linked to four equivalent CoIIIatomsviacyanide bridges, while the Cd atom that sits in a general position is connected to three equivalent CoIIIatomsviacyanide bridges. In this way, a series of trinuclear, tetranuclear and pentanuclear macrocycles are linked to form a two-dimensional network structure lying parallel to thebcplane. In the crystal structure, these two-dimensional networks are linkedviaN—H...N hydrogen bonds involving an en NH2H atom and a cyanide N atom, leading to the formation of a three-dimensional structure. This coordination polymer is only the second example involving a cyanometallate where the en ligand is present in both chelating and bridging coordination modes.



2018 ◽  
Vol 74 (8) ◽  
pp. 894-900 ◽  
Author(s):  
Lin Wang ◽  
Qian-Kun Zhou ◽  
Yun Xu ◽  
Ni-Ya Li

In recent years, the design and construction of crystalline coordination complexes by the assembly of metal ions with multitopic ligands have attracted considerable attention because of the unique architectures and potential applications of these compounds. Two new coordination polymers, namely poly[[μ-trans-1-(2-aminopyridin-3-yl)-2-(pyridin-4-yl)ethene-κ2 N:N′](μ3-5-methylisophthalato-κ4 O 1,O 1′:O 3:O 3′)cadmium(II)], [Cd(C9H6O4)(C12H11N3)] n or [Cd(5-Me-ip)(2-NH2-3,4-bpe)] n , (I), and poly[[μ-trans-1-(2-aminopyridin-3-yl)-2-(pyridin-4-yl)ethene-κ2 N:N′](μ2-5-hydroxyisophthalato-κ4 O 1,O 1′:O 3:O 5)cadmium(II)], [Cd(C8H4O5)(C12H11N3)] n or [Cd(5-HO-ip)(2-NH2-3,4-bpe)] n , (II), have been prepared hydrothermally by the self-assembly of Cd(NO3)2·4H2O and trans-1-(2-aminopyridin-3-yl)-2-(pyridin-4-yl)ethene (2-NH2-3,4-bpe) with two similar dicarboxylic acids, i.e. 5-methylisophthalic acid (5-Me-H2ip) and 5-hydroxyisophthalic acid (5-HO-H2ip). The coordination network of (I) is a two-dimensional sql net parallel to (101). Adjacent sql nets are further linked to form a three-dimensional supramolecular framework via hydrogen-bonding interactions. Compound (II) is a two-dimensional (3,5)-connected coordination network parallel to (010) with the point symbol (63)(55647). As the other reactants and reaction conditions are the same, the structural differences between (I) and (II) are undoubtedly determined by the different substituent groups in the 5-position of isophthalic acid. Both (I) and (II) exhibit good thermal stabilities and photoluminescence properties.



Sign in / Sign up

Export Citation Format

Share Document