Solar thermochemical reactions: four-component synthesis of polyhydroquinoline derivatives induced by solar thermal energy

2008 ◽  
Vol 10 (5) ◽  
pp. 592 ◽  
Author(s):  
Ramadan Ahmed Mekheimer ◽  
Afaf Abdel Hameed ◽  
Kamal Usef Sadek
2008 ◽  
Vol 19 (7) ◽  
pp. 788-790 ◽  
Author(s):  
Ramadan Ahmed Mekheimer ◽  
Mohamed Abdallah Ameen ◽  
Kamal Usef Sadek

2007 ◽  
Vol 129 (4) ◽  
pp. 378-381 ◽  
Author(s):  
Hongguang Jin ◽  
Jun Sui ◽  
Hui Hong ◽  
Zhifeng Wang ◽  
Danxing Zheng ◽  
...  

This paper manufactured an original middle-temperature solar receiver/reactor prototype, positioned along the focal line of one-axis parabolic trough concentrator, representing the development of a new kind of solar thermochemical technology. A 5kW prototype solar reactor at around 200–300°C, which is combined with a linear receiver, was originally manufactured. A basic principle of the design of the middle-temperature solar reactor is identified and described. A representative experiment of solar-driven methanol decomposition was carried out. Experimental tests were conducted from 200°C to 300°C under mean solar flux of 300–800W∕m2 and at a given methanol feeding rate of 2.1L∕h. The conversion of methanol decomposition yielded up to 50–95%, and the efficiency of solar thermal energy conversion to chemical energy reached 30–60%. The experimental results obtained here prove that the novel solar receiver/reactor prototype introduced in this paper can provide a promising approach to effectively utilize middle-temperature solar thermal energy by means of solar thermochemical processes.


2011 ◽  
Vol 01 (04) ◽  
pp. 176-181 ◽  
Author(s):  
Ramadan Ahmed Mekheimer ◽  
Khadijah Mohamed Al-Zaydi ◽  
Asma Al-Shamary ◽  
Kamal Usef Sadek

Author(s):  
Tatsuya Kodama ◽  
Yoshiyasu Kondoh ◽  
Atsushi Kiyama ◽  
Ken-Ich Shimizu

Two different routes of solar thermochemical hydrogen production are reviewed. One is two-step water splitting cycle by using a metal-oxide redox pair. The first step is based on the thermal reduction of metal oxide, which is a highly endothermic process driven by concentrated solar thermal energy. The second step involves water decomposition with the thermally-reduced metal oxide. The first thermal reduction process requires very-high temperatures, which may be realized in sun-belt regions. Another hydrogen production route is solar reforming of natural gas (methane), which can convert methane to hydrogen via calorie-upgrading by using concentrated solar thermal energy. Solar reforming is currently the most advanced solar thermochemical process in sun belt. There is also possibility for the solar reforming to be applied for worldwide solar concentrating facilities where direct insolation is weaker than that in sun belt. Our experimental studies to improve the relevant catalytic technologies are shown and discussed.


2019 ◽  
Author(s):  
Karolina Matuszek ◽  
R. Vijayaraghavan ◽  
Craig Forsyth ◽  
Surianarayanan Mahadevan ◽  
Mega Kar ◽  
...  

Renewable energy has the ultimate capacity to resolve the environmental and scarcity challenges of the world’s energy supplies. However, both the utility of these sources and the economics of their implementation are strongly limited by their intermittent nature; inexpensive means of energy storage therefore needs to be part of the design. Distributed thermal energy storage is surprisingly underdeveloped in this context, in part due to the lack of advanced storage materials. Here, we describe a novel family of thermal energy storage materials based on pyrazolium cation, that operate in the 100-220°C temperature range, offering safe, inexpensive capacity, opening new pathways for high efficiency collection and storage of both solar-thermal energy, as well as excess wind power. We probe the molecular origins of the high thermal energy storage capacity of these ionic materials and demonstrate extended cycling that provides a basis for further scale up and development.


Sign in / Sign up

Export Citation Format

Share Document