high surface area
Recently Published Documents





Carbon ◽  
2022 ◽  
Vol 188 ◽  
pp. 545
Jing Wang ◽  
Shuang Chen ◽  
Jia-yu Xu ◽  
Li-cheng Liu ◽  
Ji-cheng Zhou ◽  

Farzad Allahnouri ◽  
Khalil Farhadi ◽  
Hamideh Imanzadeh ◽  
Rahim Molaei ◽  
Habibollah Eskandari

Abstract In the present study, a bimetallic nanostructure of gold-copper (Au-CuNPs) was decorated on the surface of porous silicon (PSi) using an easy galvanic replacement reaction between metal ions and PSi in the presence of 0.1 M hydrofluoric acid solution. The morphology and structures of the [email protected] nanocomposite were characterized using X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FE-SEM), fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) energy-dispersive X-ray spectroscopy (EDX) and cyclic voltammetry (CV) techniques. Then, prepared nanocomposite was used as a modifier in screen-printed carbon electrode (SPCE) for the highly sensitive simultaneous determination of codeine (COD) and acetaminophen (ACE). The combination of PSi and metals nanoparticles provide a porous and high surface area with excellent electrical conductivity which leads to reduce the peak potentials and enhance the oxidation peak currents of COD and ACE at the surface of the [email protected]/SPCE nanosensor. The dynamic linear ranges were obtained from 0.06 to 0.6 µM for both COD and ACE and the detection limits (3.0 S/N) estimated 0.35 µM for COD and 0.30 µM for ACE, respectively. Moreover, recovery tests were carried out in real samples such as urine, human blood plasma, and tablets.

M. Salah ◽  
Soad Yehia ◽  
Rania T. Ali

Abstract Background Nourishment plants during the field time is a must; to have healthy, high productive and self-propagating plants. The trendy nano-fertilizers came to the front in modernized agriculture seeking for minimizing the soil suffocation with other chemical fertilizers in the bulk size. Nano-fertilizers may represent a way out of shot as they are completely absorbed by plant due to their small size, also it magnifies the benefit to the plant due to its high surface area. Nano-fertilizers are introduced via different way of synthesis methods. In this work, three of new nanocomposites are prepared in nano form via Gamma irradiation from Cobalt 60 source at irradiation dose 5 KGy. These composites which can supply plants with P, Zn elements needs to be revised for their safety usage in agriculture. Methodology Three compounds; Zinc oxide, phosphorous and the mixed Zinc–phosphorous elements were prepared in nano-composite forms coated with PVP as a shell and then characterized by HR-TEM, UV and FT-IR to emphasize their new sizes and shapes, then, they were examined for their cytotoxicity in three concentrations (0.5, 1 and 2%) on Vicia faba plants; after 3 h of direct roots treatment. Cytotoxicity test concerned the mitotic index, phase index, abnormal mitosis and the type of the aberrations at each phase. Results The three tested NPs exerted mito-accelerating effect on root meristematic cells. However, concentration‐dependent genotoxicity was also an evident. Conclusion The three examined nano-composites may recommend to be used in the lowest examined concentrations to minimize its harm effect on the plant cell and keep their benefits to the environment. It also recommended to count the Zn/P mix NPs over ZN or P separately as it induces an intermediating cytogenetic effect on mitosis apparatus of Vicia faba plant. Graphical Abstract

2022 ◽  
Vol 9 ◽  
Ruyue Wang ◽  
Deshuang Hu ◽  
Peng Du ◽  
Xiaodi Weng ◽  
Haolin Tang ◽  

Self-supporting electrodes usually show excellent electrocatalytic performance which does not require coating steps, additional polymer binders, and conductive additives. Rapid in situ growth of highly active ingredient on self-supporting electric conductors is identified as a straight forward path to prepare binder-free and integrated electrodes. Here, Pd-doped Co3O4 loaded on carbon nanofiber materials through electrospinning and heat treatment was efficiently synthesized, and used as a free-standing electrode. Benefiting from its abundant active sites, high surface area and effective ionic conduction capability from three-dimensional (3D) nanofiber framework, [email protected] works as bifunctional oxygen electrode and exhibits superior activity and stability superior to commercial catalysts.

Sanjay Upadhyay ◽  
Om Prakash Pandey

Abstract In this review, we summarize the latest research progress on Mo2C based materials for various electrochemical applications. It starts with discussing the different synthesis methods and the tactics for modifying the physicochemical characteristics of Mo2C. In addition, the variables that influence the morphology and electrochemical performance of Mo2C have been explored. The synthesis methods are examined based on their tricks, benefits, and drawbacks, including solid-gas, solid-solid, solid-liquid, and some other processes (chemical vapor deposition, Sonochemical, microwave-assisted, plasma, etc.). Methods that are safe, cost-effective, environmentally friendly, and suited for large-scale production of Mo2C are given special consideration. The solid-solid reaction is found to be a facile and cost-effective method to synthesize Mo2C structures having high surface area and small particle size. Also, the various electrochemical applications of Mo2C are reviewed. Mo2C is an extremely active and durable electrocatalyst mainly for hydrogen evolution reaction (HER). The electrochemical parameters such as activity, stability, etc., are examined and described in detail. The possible ways to improve the electrochemical performance of Mo2C are discussed. Finally, the difficulties in developing Mo2C nanostructures that are suited for energy storage and conversion applications are discussed.

2022 ◽  
Vol 9 ◽  
Jiazi Jiang ◽  
Quan Cai ◽  
Minghan Deng

In this work, a Pt-coordinated titanium-based porphyrin metal organic framework (Ti-MOF-Pt) was prepared by embedding single-atom Pt through strong interactions between the four pyrrole nitrogen atoms in the rigid backbone of the porphyrin. The synthesized Ti-MOF-Pt was characterized by TEM, XRD, FTIR and BET. Then, the Ti-MOF-Pt has been used for glassy carbon electrode surface modification and consequently used for construction of a thrombin aptamer sensor. The high surface area provides by MOF and excellent electrochemical property provided by Pt enhance the sensing performance. After optimization of amount of aptamer, hybridization time and specific reaction time, the fabricated aptamer sensor exhibited a linear relationship with the logarithm of the thrombin concentration in the range of 4 pM to 0.2 μM. The detection limit can be calculated as 1.3 pM.

Utkarsh Chadha ◽  
Senthil Kumaran Selvaraj ◽  
S. Vishak Thanu ◽  
Vishnu Cholapadath ◽  
Ashesh Mathew Abraham ◽  

Abstract Water is a necessity for all living and non-living organisms on this planet. It is understood that clean water sources are decreasing by the day, and the rapid rise of Industries and technology has led to an increase in the release of toxic effluents that are discharged into the environment. Wastewater released from Industries, agricultural waste, and municipalities must be treated before releasing into the environment as they contain harmful pollutants such as organic dyes, pharmaceuticals wastes, inorganic materials, and heavy metal ions. If not controlled, they can cause serious risks to human beings' health and contaminate our environment. Membrane filtration is a proven method for the filtration of various harmful chemicals and microbes from water. Carbon nanomaterials are applied in wastewater treatment due to their high surface area, making them efficient adsorbents. Carbon nanomaterials are being developed and utilized in membrane filtration for the treated wastewater before getting discharged with the rise of nanotechnology. This review studies carbon nanomaterials like fullerenes, graphenes, and CNTs incorporated in the membrane filtration to treat wastewater contaminants. We focus on these CNM based membranes and membrane technology, their properties and applications, and how they can enhance the commonly used membrane filtration performance by considering adsorption rate, selectivity, permeability, antimicrobial disinfectant properties, and compatibility with the environment.

Sign in / Sign up

Export Citation Format

Share Document