Anthraquinone based polymer as high performance cathode material for rechargeable lithium batteries

2009 ◽  
pp. 448-450 ◽  
Author(s):  
Zhiping Song ◽  
Hui Zhan ◽  
Yunhong Zhou
2016 ◽  
Vol 328 ◽  
pp. 241-249 ◽  
Author(s):  
Yangsheng Cai ◽  
Jiang Zhou ◽  
Guozhao Fang ◽  
Gemei Cai ◽  
Anqiang Pan ◽  
...  

2021 ◽  
Vol 215 ◽  
pp. 108849 ◽  
Author(s):  
Lingli Liu ◽  
Tongwei Xu ◽  
Xuefeng Gui ◽  
Shuxi Gao ◽  
Longfeng Sun ◽  
...  

2018 ◽  
Vol 1 (11) ◽  
pp. 5859-5864 ◽  
Author(s):  
Amruth Bhargav ◽  
Michaela Elaine Bell ◽  
Yi Cui ◽  
Yongzhu Fu

2003 ◽  
Vol 351 (1-2) ◽  
pp. 273-278 ◽  
Author(s):  
Sang-Cheol Han ◽  
Hyun-Seok Kim ◽  
Min-Sang Song ◽  
Jin-Ho Kim ◽  
Hyo-Jun Ahn ◽  
...  

2016 ◽  
Vol 09 (01) ◽  
pp. 1650004 ◽  
Author(s):  
Jiangfeng Ni ◽  
Jiaxing Jiang ◽  
S. V. Savilov ◽  
S. M. Aldoshin

Nanostructured LiFePO4 is appealing cathode material for rechargeable lithium batteries. Herein, however, we report the intriguing anode properties of carbon coated LiFePO4 nanocrystals. In the potential range of 0–3.0 V, the LiFePO4 nanocrystal electrodes afford high reversible capacity of 373 mAh[Formula: see text]g[Formula: see text] at a current rate of 0.05 A[Formula: see text]g[Formula: see text] and retains 239 mAh[Formula: see text]g[Formula: see text] at a much higher rate of 1.25 A[Formula: see text]g[Formula: see text]. In addition, it is capable of sustaining 1000 cycles at 1.25 A[Formula: see text]g[Formula: see text] without any capacity fading. Such superior properties indicate that nanostructured LiFePO4 could also be promising anode for rechargeable battery applications.


Sign in / Sign up

Export Citation Format

Share Document