rechargeable battery
Recently Published Documents


TOTAL DOCUMENTS

743
(FIVE YEARS 191)

H-INDEX

59
(FIVE YEARS 12)

2022 ◽  
Vol 431 ◽  
pp. 133961
Author(s):  
Qianwu Chen ◽  
Song Chen ◽  
Lanling Zhao ◽  
Jizhen Ma ◽  
Huaisheng Wang ◽  
...  

2022 ◽  
pp. 28-38
Author(s):  
OLEXANDER SHAVOLKIN ◽  
YEVHEN STANOVSKYI ◽  
MYKOLA PIDHAINYI ◽  
RUSLAN MARCHENKO ◽  
HENNADII KRUHLIAK

Purpose. Improving the efficiency of a hybrid photoelectric system with a rechargeable battery for the needs of the local object by improving the management of the forecast with simulation of energy processes in the system, development of principles for the implementation of energy management systems.Methodology. Analysis of energy processes in the electrical circuits of the photoelectric system with the formalization of the principles of control reconfiguration and the use of computer modeling based on archival data of photoelectric battery generation to evaluate the efficiency of energy management.Findings. Block structures and the general structure of the model of energy processes in the system for the daily cycle of work with an estimation of the cost of electricity consumed from the grid have been developed. The principles of control modes and power consumption of the system according to the forecast of photoelectric battery generation were formalized.Originality. The principles of setting the battery current according to the forecast of photoelectric energy generation, the state of battery charge and the power limit consumed from the grid have been improved. It will help to make better use of the energy of the photoelectric battery and reduce the consumption of electricity from the grid. The mathematical model of the rechargeable battery, built on the manufacturer's catalog data has been improved. The formalization of energy processes in the system with the use of additional variables, which provide reconfiguration of work with regulation of photoelectric battery generation or battery current and taking into account the power limit consumed from the grid is substantiated.Practical value. The obtained solutions are the basis for designing photoelectric control systems to meet the needs of local objects.


Author(s):  
D. Pukazhselvan ◽  
Francisco J. A. Loureiro ◽  
Aliaksandr Shaula ◽  
Sergey Mikhalev ◽  
Igor Bdikin ◽  
...  

Author(s):  
Swagata Banerjee

Abstract: Smart Seat: When a person seats on a seat, certain amount of pressure is applied on it. If we install certain amount of piezoelectric sensor in a seat. With the help of pressure, we can generate voltage. Piezoelectric sensor is a device that uses the piezoelectric effect, to measure changes in pressure, acceleration, temperature, strain, or force by converting them to an electrical charge. Using the sensor under the seat the pressure generated by a person seated on a chair can be sensed by sensor and generate electricity. Mainly piezoelectric material that can generate a voltage proportional to the stress applied upon it. This paper is based around this process. There will be springs attached under the seat also. When pressure is applied on the spring there will be equal pressure applied on a sensor which is attached in the bottom of every spring. With this we can generate a considerable amount of voltage to use it in future by storing it in a rechargeable battery. If the pressure is more applied on the sensor, then we can generate more voltage through the process. Keywords: Sensor, Battery, Piezoelectric, Seat, pressure.


Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4375
Author(s):  
Andrés Mauricio Ramírez ◽  
Manuel Alejandro Gacitúa ◽  
Fernando Raúl Díaz ◽  
María Angélica del Valle

In this work, the use of nanostructured conducting polymer deposits on energy-storing devices is described. The cathode and the anode are electrochemically modified with nanowires of polypyrrole and poly(3,4-ethylenedioxythiophene), respectively, prepared after the use of a mesoporous silica template. The effect of aqueous or ionic liquid medium is assayed during battery characterization studies. The nanostructured device greatly surpasses the performance of the bulk configuration in terms of specific capacity, energy, and power. Moreover, compared with devices found in the literature with similar designs, the nanostructured device prepared here shows better battery characteristics, including cyclability. Finally, considering the semi-conducting properties of the components, the device was adapted to the design of a solar-rechargeable device by the inclusion of a titanium oxide layer and cis-bis(isothiocyanate)-bis(2,2′-bipyridyl-4,4′-dicarboxylate) ruthenium (II) dye. The device proved that the nanostructured design is also appropriate for the implementation of solar-rechargeable battery, although its performance still requires further optimization.


2021 ◽  
Author(s):  
Jasmin Smajic ◽  
Amira Alazmi ◽  
Nimer Wehbe ◽  
Pedro M. F. J. Costa

Concerns over lithium-ion battery safety and environmental impact have led to increased exploration of alternative energy storage systems. Of these, aluminum is of particular interest, being environmentally friendly, safe and easy to handle. In this work, we explore graphitic cathodes with an aqueous electrolyte (aluminum trifluoromethanesulfonate) and study their electrochemical performance. Finally, a reduced graphene cathode with tailored porosity results in an eco-friendly and inherently safe rechargeable battery with promising electrochemical performance


Batteries ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 82
Author(s):  
Chase McCreary ◽  
Yuhui An ◽  
Sun Ung Kim ◽  
Yoon Hwa

Lithium/sulfur (Li/S) cells that offer an ultrahigh theoretical specific energy of 2600 Wh/kg are considered one of the most promising next-generation rechargeable battery systems for the electrification of transportation. However, the commercialization of Li/S cells remains challenging, despite the recent advancements in materials development for sulfur electrodes and electrolytes, due to several critical issues such as the insufficient obtainable specific energy and relatively poor cyclability. This review aims to introduce electrode manufacturing and modeling methodologies and the current issues to be overcome. The obtainable specific energy values of Li/S pouch cells are calculated with respect to various parameters (e.g., sulfur mass loading, sulfur content, sulfur utilization, electrolyte-volume-to-sulfur-weight ratio, and electrode porosity) to demonstrate the design requirements for achieving a high specific energy of >300 Wh/kg. Finally, the prospects for rational modeling and manufacturing strategies are discussed, to establish a new design standard for Li/S batteries.


2021 ◽  
Vol 2131 (4) ◽  
pp. 042100
Author(s):  
V Romanovsky ◽  
B Nikiforov ◽  
A Avramenko

Abstract The rapid improvement of lithium-ion rechargeable battery (LIRB) has given a powerful impetus to the development of environmentally friendly, powerful and universal for use on ships and underwater vehicles. The practice of building electric ships for many years has confirmed the effectiveness of electric propulsion for many types of vessels. Organically, electric propulsion fits into icebreakers and those vessels whose operation is associated with increased maneuvering modes and variable loads on propellers. LIRB has been actively used on ferries operating in a wide range of outdoor temperatures. On diesel-electric submarines (DES), the use of rechargeable batteries is traditional and is the main source of electricity. The subsequent development of new sources of electricity, the improvement of power semiconductor devices and microelectronics has led to the successful implementation of ideas for the construction of fully electric offshore facilities.


2021 ◽  
Author(s):  
Tural Khudiyev ◽  
Benjamin Grena ◽  
Gabriel Loke ◽  
Chong Hou ◽  
Hyeonji Jang ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document