silane coupling agent
Recently Published Documents


TOTAL DOCUMENTS

779
(FIVE YEARS 172)

H-INDEX

50
(FIVE YEARS 7)

2022 ◽  
Vol 14 (2) ◽  
pp. 700
Author(s):  
Kai-Yen Chin ◽  
Angus Shiue ◽  
Yi-Jing Wu ◽  
Shu-Mei Chang ◽  
Yeou-Fong Li ◽  
...  

During the production process of commercial carbon fiber reinforced polymers (CFRPs), a silane coupling agent is added to the carbon fiber at the sizing step as a binder to enhance the product’s physical properties. While improving strength, the silane coupling agent results in a silane residue on recovered carbon fibers (rCF) after recycling, which is a disadvantage when using recovered carbon fibers in the manufacture of new materials. In this study, the rCF is recovered from waste carbon fiber reinforced polymers (CFRPs) from the bicycle industry by a microwave pyrolysis method, applying a short reaction time and in an air atmosphere. Moreover, the rCF are investigated for their surface morphologies and the elements present on the surface. The silicon element content changes with pyrolysis temperature were 0.4, 0.9, and 0.2%, respectively, at 450, 550, and 650 °C. Additionally, at 950 °C, silicon content can be reduced to 0.1 ± 0.05%. The uniformity of microwave pyrolysis recycle treatment was compared with traditional furnace techniques used for bulk waste treatment by applying the same temperature regime. This work provides evidence that microwave pyrolysis can be used as an alternative method for the production of rCFs for reuse applications.


Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4417
Author(s):  
Xue Li ◽  
Ling Weng ◽  
Hebing Wang ◽  
Xiaoming Wang

To promote the construction of the thermal network in the epoxy resin (EP), a certain proportion of silver nanowires (AgNWs) coupled with the hexagonal boron nitride (BN) nanoplates were chosen as fillers to improve the thermal conductivity of EP resin. Before preparing the composites, BN was treated by silane coupling agent 3-aminopropyltriethoxysilane (KH550), and AgNWs was coated by dopamine hydrochloride. The BN/AgNWs/EP composites were prepared after curing, and the thermal conductivity and dielectric properties of the composites was tested. Results showed that the AgNWs and BN were uniformly dispersed in epoxy resin. It synergistically built a thermal network and greatly increased the thermal conductivity of the composites, which increased 9% after adding AgNWs. Moreover, the electrical property test showed that the addition of AgNWs had little effect on the dielectric constant and dielectric loss of the composites, indicating a rather good electrical insulation of the composites.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7363
Author(s):  
Zhaofeng Lu ◽  
Lin Kong ◽  
Zhaoyi He ◽  
Hao Xu ◽  
Kang Yang ◽  
...  

In order to solve the problems of the smooth surface of basalt fiber and its weak interfacial adhesion with emulsified asphalt cold recycled mixture, a silane coupling agent (KH550) was used to treat the surface of basalt fiber and the effects of treatment concentration and soaking time on fiber modification were studied. The influence of silane coupling-modified basalt fiber (MBF) on the rheological properties of emulsified asphalt evaporation residue was studied at high and low temperatures using three routine index tests: a dynamic shear rheological test (DSR), a bending beam rheological test (BBR), and a force ductility test. The elemental changes of the fiber before and after modification and the microstructure of the emulsified asphalt evaporation residue with the coupling-modified fiber were analyzed by Fourier infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and X-ray energy dispersive spectroscopy (EDS), which is used to study the modification mechanism of emulsified asphalt evaporation residue reinforced by coupling-modified fiber. The results indicate that the concentration and soaking time of the silane coupling agent have a great influence on the surface morphology and mechanical properties of the fiber, and that the optimal treatment concentration is 1.0% and the optimal soaking time is 60 min. The addition of coupling-modified fibers can reduce the phase angle and unrecoverable creep compliance of emulsified asphalt evaporation residue, increase the rutting factor and creep recovery rate, and improve the elastic recovery ability and permanent deformation resistance. However, excessive fiber will weaken the ductility of emulsified asphalt at low temperatures. The appropriate content of silane coupling-modified fiber (MBF) is 1.5%. After silane coupling modification, the fiber surface becomes rough and cohesion is enhanced between the fiber and the emulsified asphalt base. Silane coupling-modified basalt fiber (MBF) acts as reinforcement for stability and bridging cracks.


Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4101
Author(s):  
Zijin Wu ◽  
Yonggang Shangguan ◽  
Chunhui Zhang ◽  
Qiang Zheng

In order to improve the bonding performance, EVA composite hot melt adhesives were prepared by introducing crosslinking agent and silane coupling agent in this paper. A binary EVA resin blend as the base resin with appropriate viscosity and tensile shear strength was selected as hot melt adhesive. The effects of crosslinking agent and silane coupling agent on the properties of ethylene/vinyl acetate (EVA) composite hot melt adhesive were studied. By investigating the preparation and curing conditions of hot melt adhesive and the properties of hot melt adhesive after the introduction of dicumyl peroxide (DCP), the optimum temperature and dosage of DCP and its influence on the properties were determined. It was found that the tensile shear strength of hot melt adhesive increased from 0.247 MPa to 0.726 MPa when 2 phr DCP and 5 phr KH570 were added at the same time. The tensile strength and tensile shear strength of hot melt adhesive are only slightly improved when silicone coupling agents with different functional groups are added to EVA composite hot melt adhesive. However, it was found that excessive silane coupling agent would significantly reduce the tensile strength and shear peel strength of the material.


ACS Omega ◽  
2021 ◽  
Author(s):  
Minhui Pang ◽  
Qiang Zuo ◽  
Bing Cao ◽  
Hongyan Li ◽  
Lina Liang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document