scholarly journals Density functional studies of functionalized graphitic materials with late transition metals for oxygen reduction reactions

2011 ◽  
Vol 13 (34) ◽  
pp. 15639 ◽  
Author(s):  
Federico Calle-Vallejo ◽  
José Ignacio Martínez ◽  
Jan Rossmeisl
2021 ◽  
Vol 20 (04) ◽  
pp. 359-375
Author(s):  
Muhammad Yasir Mehboob ◽  
Fakhar Hussain ◽  
Riaz Hussain ◽  
Shaukat Ali ◽  
Zobia Irshad ◽  
...  

Hydrogen is considered as one of the attractive environmentally friendly materials with zero carbon emission. Hydrogen storage is still challenging for its use in various energy applications. That’s why hydrogen gained more and more attention to become a major fuel of today’s energy consumption. Therefore, nowadays, hydrogen storage materials are under extensive research. Herein, efforts are being devoted to design efficient systems which could be used for future hydrogen storage purposes. To this end, we have employed density functional theory (DFT) to optimize the geometries of the designed inorganic Al[Formula: see text]N[Formula: see text] nanoclusters with transition metals (Fe, Co, Ni, Cu and Zn). Various positions of metal encapsulated Al[Formula: see text]N[Formula: see text] are examined for efficient hydrogen adsorption. After adsorption of H2 on late transition metals encapsulated Al[Formula: see text]N[Formula: see text] nanocluster, different geometric parameters like frontier molecular orbitals, adsorption energies and nature bonding orbitals have been performed for exploring the potential of metal encapsulated for hydrogen adsorption. Moreover, molecular electrostatic potential (MEP) analysis was also performed in order to explore the different charge separation upon H2 adsorption on metals encapsulated Al[Formula: see text]N[Formula: see text] nanoclusters. Also, global indices of reactivity like ionization potential, electron affinity, electrophilic index, chemical softness and chemical hardness were also examined by using DFT. The adsorption energy results suggested encapsulation of late transition metals in Al[Formula: see text]N[Formula: see text] nanocage efficiently enhancing the adsorption capability of Al[Formula: see text]N[Formula: see text] for hydrogen adsorption. Results of all analysis suggested that our designed systems are efficient candidates for hydrogen adsorption. Thus, we recommended a novel kind of systems for hydrogen storage materials.


2019 ◽  
Vol 9 (1) ◽  
pp. 174-181 ◽  
Author(s):  
Gholamreza Rostamikia ◽  
Sharad Maheshwari ◽  
Michael J. Janik

Nitrogen reduction reaction barriers calculated by density functional theory quantify NRR activity and selectivity challenges.


2020 ◽  
Author(s):  
Marti Lopez ◽  
Francesc Vines ◽  
Michael Nolan ◽  
Frances Illas

Previous work has shown that doping the TiC(001) surface with early transition metals significantly affects CO<sub>2</sub> adsorption and activation which opens a possible way to control this interesting chemistry. In this work we explore other possibilities which include non-transition metals elements (Mg, Ca, Sr, Al, Ga, In, Si, Sn) as well as late transition metals (Pd, Pt, Rh, Ir) and lanthanides (La, Ce) often used in catalysis. Using periodic slab models with large supercells and state-of-the-art density functional theory (DFT) based calculations, we show that, in all the studied cases, CO<sub>2</sub> appears as bent and, hence, activated. However, the effect is especially pronounced for dopants with large ionic crystal radii. These can increase desorption temperature by up to 230K, almost twice the value predicted when early transition metals are used as dopants. However, a detailed analysis of the results shows that the main effect does not come from electronic structure perturbations but from the distortion that the dopant generates into the surface atomic structure. A simple descriptor is proposed that would allow predicting the effect of the dopant on the CO<sub>2</sub> adsorption energy in transition metal carbide surfaces without requiring DFT calculations.


2020 ◽  
Author(s):  
Marti Lopez ◽  
Francesc Vines ◽  
Michael Nolan ◽  
Frances Illas

Previous work has shown that doping the TiC(001) surface with early transition metals significantly affects CO<sub>2</sub> adsorption and activation which opens a possible way to control this interesting chemistry. In this work we explore other possibilities which include non-transition metals elements (Mg, Ca, Sr, Al, Ga, In, Si, Sn) as well as late transition metals (Pd, Pt, Rh, Ir) and lanthanides (La, Ce) often used in catalysis. Using periodic slab models with large supercells and state-of-the-art density functional theory (DFT) based calculations, we show that, in all the studied cases, CO<sub>2</sub> appears as bent and, hence, activated. However, the effect is especially pronounced for dopants with large ionic crystal radii. These can increase desorption temperature by up to 230K, almost twice the value predicted when early transition metals are used as dopants. However, a detailed analysis of the results shows that the main effect does not come from electronic structure perturbations but from the distortion that the dopant generates into the surface atomic structure. A simple descriptor is proposed that would allow predicting the effect of the dopant on the CO<sub>2</sub> adsorption energy in transition metal carbide surfaces without requiring DFT calculations.


Nanoscale ◽  
2020 ◽  
Vol 12 (39) ◽  
pp. 20413-20424
Author(s):  
Riming Hu ◽  
Yongcheng Li ◽  
Fuhe Wang ◽  
Jiaxiang Shang

Bilayer single atom catalysts can serve as promising multifunctional electrocatalysts for the HER, ORR, and OER.


2021 ◽  
Author(s):  
Sujoy Rana ◽  
Jyoti Prasad Biswas ◽  
Sabarni Paul ◽  
Aniruddha Paik ◽  
Debabrata Maiti

The promising aspects of iron in synthetic chemistry are being explored for three-four decades as a green and eco-friendly alternative to late transition metals. This present review unveils these rich iron-chemistry towards different transformations.


Sign in / Sign up

Export Citation Format

Share Document