catalytic performances
Recently Published Documents


TOTAL DOCUMENTS

732
(FIVE YEARS 214)

H-INDEX

53
(FIVE YEARS 13)

ACS Catalysis ◽  
2022 ◽  
pp. 1068-1081
Author(s):  
Jean-Marc Schweitzer ◽  
Jérôme Rey ◽  
Charles Bignaud ◽  
Tomáš Bučko ◽  
Pascal Raybaud ◽  
...  

Catalysts ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 2
Author(s):  
Xingyuan Gao ◽  
Huilin Deng ◽  
Qiuping Dai ◽  
Quanlong Zeng ◽  
Shuxian Qiu ◽  
...  

As a sustainable and clean energy source, hydrogen can be generated by electrolytic water splitting (i.e., a hydrogen evolution reaction, HER). Compared with conventional noble metal catalysts (e.g., Pt), Mo based materials have been deemed as a promising alternative, with a relatively low cost and comparable catalytic performances. In this review, we demonstrate a comprehensive summary of various Mo based materials, such as MoO2, MoS2 and Mo2C. Moreover, state of the art designs of the catalyst structures are presented, to improve the activity and stability for hydrogen evolution, including Mo based carbon composites, heteroatom doping and heterostructure construction. The structure–performance relationships relating to the number of active sites, electron/ion conductivity, H/H2O binding and activation energy, as well as hydrophilicity, are discussed in depth. Finally, conclusive remarks and future works are proposed.


Catalysts ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1536
Author(s):  
Norah Alhokbany ◽  
Saad M. Alshehri ◽  
Jahangeer Ahmed

ZnWO4 nanoparticles on reduced graphene oxide (ZnWO4-NPs@rGO) nanocomposites were synthesized using the hydrothermal method. Structural, morphological, optical, and photocatalytic studies of the ZnWO4-NPs@rGO nanocomposites were successfully investigated. Photo-catalytic performances of the ZnWO4-NPs@rGO nanocomposites were examined for the degradation of hazardous methylene blue dye (HMBD) in a neutral medium. ZnWO4-NPs@rGO nanocomposites show superior photo-catalytic performances over pure ZnWO4 nanoparticles. ZnWO4-NPs@rGO nanocomposites degrade ~98% dye while pure ZnWO4 nanoparticles degrade ~53% dye in 120 min. The prepared nanocomposites also show excellent recycled photo-catalytic efficiencies over multiple cycles.


2021 ◽  
Vol 516 ◽  
pp. 111974
Author(s):  
Beibei Wang ◽  
Xiaohua Wang ◽  
Rui Zhuang ◽  
Chunyu Zhang ◽  
Heng Liu ◽  
...  

Catalysts ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1225
Author(s):  
Patrizia Frontera ◽  
Mariachiara Miceli ◽  
Francesco Mauriello ◽  
Pierantonio De Luca ◽  
Anastasia Macario

Methanation reaction of carbon dioxide is currently envisaged as a facile solution for the storage and transportation of low-grade energies, contributing at the same time to the mitigation of CO2 emissions. In this work, a nickel catalyst impregnated onto a new support, Engelhard Titanium Silicates (ETS), is proposed, and its catalytic performance was tested toward the CO2 methanation reaction. Two types of ETS material were investigated, ETS-4 and ETS-10, that differ from each other in the titanium content, with Si/Ti around 2 and 3% by weight, respectively. Catalysts, loaded with 5% of nickel, were tested in the CO2 methanation reaction in the temperature range of 300–500 °C and were characterized by XRD, SEM–EDX, N2 adsorption–desorption and H2-TPR. Results showed an interesting catalytic activity of the Ni/ETS catalysts. Particularly, the best catalytic performances are showed by Ni/ETS-10: 68% CO2 conversion and 98% CH4 selectivity at T = 400 °C. The comparison of catalytic performance of Ni/ETS-10 with those obtained by other Ni-zeolites catalysts confirms that Ni/ETS-10 catalyst is a promising one for the CO2 methanation reaction.


Sign in / Sign up

Export Citation Format

Share Document