metal carbides
Recently Published Documents


TOTAL DOCUMENTS

869
(FIVE YEARS 236)

H-INDEX

76
(FIVE YEARS 16)

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 658
Author(s):  
Štefan Michna ◽  
Anna Knaislová ◽  
Iryna Hren ◽  
Jan Novotný ◽  
Lenka Michnová ◽  
...  

This article is devoted to the characterization of a new Co-W-Al alloy prepared by an aluminothermic reaction. This alloy is used for the subsequent preparation of a special composite nanopowder and for the surface coating of aluminum, magnesium, or iron alloys. Due to the very high temperature (2000 °C–3000 °C) required for the reaction, thermite was added to the mixture. Pulverized coal was also added in order to obtain the appropriate metal carbides (Co, W, Ti), which increase hardness, resistance to abrasion, and the corrosion of the coating and have good high temperature properties. The phase composition of the alloy prepared by the aluminothermic reaction showed mainly cobalt, tungsten, and aluminum, as well as small amounts of iron, titanium, and calcium. No carbon was identified using this method. The microstructure of this alloy is characterized by a cobalt matrix with smaller regular and irregular carbide particles doped by aluminum.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Bing Deng ◽  
Zhe Wang ◽  
Weiyin Chen ◽  
John Tianci Li ◽  
Duy Xuan Luong ◽  
...  

AbstractNanoscale carbides enhance ultra-strong ceramics and show activity as high-performance catalysts. Traditional lengthy carburization methods for carbide syntheses usually result in coked surface, large particle size, and uncontrolled phase. Here, a flash Joule heating process is developed for ultrafast synthesis of carbide nanocrystals within 1 s. Various interstitial transition metal carbides (TiC, ZrC, HfC, VC, NbC, TaC, Cr2C3, MoC, and W2C) and covalent carbides (B4C and SiC) are produced using low-cost precursors. By controlling pulse voltages, phase-pure molybdenum carbides including β-Mo2C and metastable α-MoC1-x and η-MoC1-x are selectively synthesized, demonstrating the excellent phase engineering ability of the flash Joule heating by broadly tunable energy input that can exceed 3000 K coupled with kinetically controlled ultrafast cooling (>104 K s−1). Theoretical calculation reveals carbon vacancies as the driving factor for topotactic transition of carbide phases. The phase-dependent hydrogen evolution capability of molybdenum carbides is investigated with β-Mo2C showing the best performance.


2022 ◽  
pp. 2111357
Author(s):  
Yixuan Fan ◽  
Lin Li ◽  
Ye Zhang ◽  
Xiaotao Zhang ◽  
Dechao Geng ◽  
...  

Author(s):  
Daniel Goehl ◽  
Holger Rueß ◽  
Andrea M Mingers ◽  
Karl Johann Jakob Mayrhofer ◽  
Jochen M Schneider ◽  
...  

Abstract Transition metal carbides have the potential to be employed as corrosion protective coating for a variety of applications such as e.g. steel based bipolar plates, porous transport layers or as catalyst support in polymer electrolyte membrane fuel cells and water electrolyzers. Yet, little is known of their fundamental, intrinsic corrosion and passivation properties. Herein, we conducted a detailed electrochemical passivation study of various valve transition metal carbides such as titanium carbide, tantalum carbide or tungsten carbide. Via flow cell measurements coupled to an inductively coupled plasma mass spectrometer, the in-situ transition metal dissolution was monitored, and the faradaic dissolution efficiency was calculated. Together with the determination of the grown oxide layer via X-ray photoelectron spectroscopy, a thorough evaluation of the passivation efficiency was conducted. Moreover, it was shown that a beneficial stabilization effect can be achieved through alloying of different carbides, which paves the way towards tailor-made coatings or catalyst support materials.


2022 ◽  
pp. 113943
Author(s):  
Subbiah Alwarappan ◽  
Noel Nesakumar ◽  
Dali Sun ◽  
Tony Y. Hu ◽  
Chen-Zhong Li
Keyword(s):  

Author(s):  
Ken Aldren Aldren Usman ◽  
Jizhen Zhang ◽  
Ya Yao ◽  
Si Qin ◽  
Peter Lynch ◽  
...  

The liquid crystal (LC) phases of two-dimensional (2D) transition metal carbides/nitrides (MXenes) has enabled the production of their unique macro-architectures with ordered microstructure and enhanced properties. However, LC phases in...


Author(s):  
Saeid Asgharizadeh ◽  
Saeid Khesali Azadi ◽  
Masoud Lazemi

A large and rapidly expanding class of two-dimensional (2D) metal carbides, nitrides, and carbonitrides called MXenes, with their interesting photovoltaic applications and tunable surface termination, has found a vast range...


Author(s):  
Hector Prats ◽  
Michail Stamatakis

Novel research avenues have been explored over the last decade on the use of transition metal carbides (TMCs) as catalytically active supports for metal nanoclusters, which display high catalytic activity...


Author(s):  
Pragati Shinde ◽  
Amar Patil ◽  
Su Chan Lee ◽  
Euigeol Jung ◽  
Seong Chan Jun

Since the discovery of Ti3C2Tx in early 2011, a newly emerging family of post-graphene two-dimensional transition metal carbides and nitrides (MXenes) has been rigorously investigated owing to their high conductivity....


Sign in / Sign up

Export Citation Format

Share Document