Intramolecular general base catalysis by the ionised carboxy-group of the hydrolysis of aryl hydrogen malonates

Author(s):  
A. J. Kirby ◽  
G. J. Lloyd
1982 ◽  
Vol 35 (7) ◽  
pp. 1357 ◽  
Author(s):  
TJ Broxton

The hydrolysis of 2-acetyloxybenzoic acid in the pH range 6-12 has been studied in the presence of micelles of cetyltrimethylammonium bromide (ctab) and cetylpyridinium chloride (cpc). In the plateau region (pH 6-8) the hydrolysis is inhibited by the presence of micelles, while in the region where the normal BAC2 hydrolysis (pH > 9) occurs the reaction is catalysed by micelles of ctab and cpc. The mechanism of hydrolysis in the plateau region is shown to involve general base catalysis by the adjacent ionized carboxy group both in the presence and absence of micelles. This reaction is inhibited in the presence of micelles because the substrate molecules are solubilized into the micelle and water is less available in this environment than in normal aqueous solution.


2005 ◽  
Vol 83 (9) ◽  
pp. 1483-1491 ◽  
Author(s):  
Eduardo Humeres ◽  
Maria de Nazaré M. Sanchez ◽  
Conceição ML Lobato ◽  
Nito A Debacher ◽  
Eduardo P. de Souza

The hydrolysis of ethyl N-ethylthioncarbamate (ETE) at 100 °C was studied in the range of 7 mol/L HCl to 4 mol/L NaOH. The pH–rate profile showed that the hydrolysis occurred through specific acid catalysis at pH < 2, spontaneous hydrolysis at pH 2–6.5, and specific basic catalysis at pH > 6.5. The Hammett acidity plot and the excess acidity plot against X were linear. The Bunnett–Olsen plot gave a negative slope indicating that the conjugate acid was less hydrated than the neutral substrate. It was concluded that the acid hydrolysis occurred by an A1 mechanism. The neutral species hydrolyzed with general base catalysis shown by the Brønsted plot with β = 0.48 ± 0.04. Water acted as a general base catalyst with (pseudo-)first-order rate constant, kN = 3.06 × 10–7 s–1. At pH > 6.5 the rate constants increased, reaching a plateau at high basicity. The basic hydrolysis rate constant of ethyl N,N-diethylthioncarbamate, which must react by a BAc2 mechanism, increased linearly at 1–3 mol/L NaOH with a second-order rate constant, k2 = 2.3 × 10–4 (mol/L)–1 s–1, which was 10 times slower than that expected for ETE. Experiments of ETE in 0.6 mol/L NaOH with an excess of ethylamine led to the formation of diethyl thiourea, presenting strong evidence that the basic hydrolysis occurred by the E1cb mechanism. In the rate-determining step, the E1cb mechanism involved the elimination of ethoxide ion from the thioncarbamate anion, producing an isothiocyanate intermediate that decomposed rapidly to form ethylamine, ethanol, and COS.Key words: alkylthioncarbamate esters, ethyl N-ethylthioncarbamate, ethyl N,N-diethylthioncarbamate, hydrolysis, mechanism.


1971 ◽  
Vol 124 (1) ◽  
pp. 117-122 ◽  
Author(s):  
G. Lowe ◽  
Y. Yuthavong

The pH-dependence of the Michaelis–Menten parameters for the papain-catalysed hydrolysis of N-acetyl-l-phenylalanylglycine p-nitroanilide was determined. The equilibrium binding constant, Ks, is independent of pH between 3.7 and 9.3, whereas the acylation constant, k+2, shows bell-shaped pH-dependence with apparent pKa values of 4.2 and 8.2. The effect of substituents in the leaving group on the acylation constant of the papain-catalysed hydrolysis of hippuryl anilides and N-acetyl-l-phenylalanylglycine anilides gives rise in both series to a Hammett ρ value of -1.04. This indicates that the enzyme provides electrophilic, probably general-acid, catalysis, as well as the nucleophilic or general-base catalysis previously found. A mechanism involving a tetrahedral intermediate whose formation is general-base-catalysed and whose breakdown is general-acid-catalysed seems most likely. The similarity of the Hammett ρ values appears to exclude facilitated proton transfer as a means through which the specificity of papain is expressed.


Sign in / Sign up

Export Citation Format

Share Document