Label-free free-solution nanoaperture optical tweezers for single molecule protein studies

The Analyst ◽  
2015 ◽  
Vol 140 (14) ◽  
pp. 4760-4778 ◽  
Author(s):  
Ahmed A. Al Balushi ◽  
Abhay Kotnala ◽  
Skyler Wheaton ◽  
Ryan M. Gelfand ◽  
Yashaswini Rajashekara ◽  
...  

Recent advances in nanoaperture optical tweezers have enabled studies of single nanoparticles like proteins in label-free, free-solution environments.

2014 ◽  
Author(s):  
Abhay Kotnala ◽  
Ahmed A. Al-Balushi ◽  
Reuven Gordon

2020 ◽  
Author(s):  
Nikolas Hundt

Abstract Single-molecule imaging has mostly been restricted to the use of fluorescence labelling as a contrast mechanism due to its superior ability to visualise molecules of interest on top of an overwhelming background of other molecules. Recently, interferometric scattering (iSCAT) microscopy has demonstrated the detection and imaging of single biomolecules based on light scattering without the need for fluorescent labels. Significant improvements in measurement sensitivity combined with a dependence of scattering signal on object size have led to the development of mass photometry, a technique that measures the mass of individual molecules and thereby determines mass distributions of biomolecule samples in solution. The experimental simplicity of mass photometry makes it a powerful tool to analyse biomolecular equilibria quantitatively with low sample consumption within minutes. When used for label-free imaging of reconstituted or cellular systems, the strict size-dependence of the iSCAT signal enables quantitative measurements of processes at size scales reaching from single-molecule observations during complex assembly up to mesoscopic dynamics of cellular components and extracellular protrusions. In this review, I would like to introduce the principles of this emerging imaging technology and discuss examples that show how mass-sensitive iSCAT can be used as a strong complement to other routine techniques in biochemistry.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Carlos J. Bustamante ◽  
Yann R. Chemla ◽  
Shixin Liu ◽  
Michelle D. Wang

Life ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 27
Author(s):  
Ana Crnković ◽  
Marija Srnko ◽  
Gregor Anderluh

Nanopore-based sensing is a powerful technique for the detection of diverse organic and inorganic molecules, long-read sequencing of nucleic acids, and single-molecule analyses of enzymatic reactions. Selected from natural sources, protein-based nanopores enable rapid, label-free detection of analytes. Furthermore, these proteins are easy to produce, form pores with defined sizes, and can be easily manipulated with standard molecular biology techniques. The range of possible analytes can be extended by using externally added adapter molecules. Here, we provide an overview of current nanopore applications with a focus on engineering strategies and solutions.


Sign in / Sign up

Export Citation Format

Share Document