Advantages, drawbacks and applications of mixed Ar–N2 sources in inductively coupled plasma-based techniques: an overview

2014 ◽  
Vol 6 (16) ◽  
pp. 6170-6182 ◽  
Author(s):  
G. L. Scheffler ◽  
D. Pozebon

This review deals with mixed gas Ar–N2 plasmas, highlighting advantages, limitations and applications of them in inductively coupled plasma optical emission spectrometry (ICP OES), inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) techniques, covering publications in the last three decades.

2013 ◽  
Vol 32 (1) ◽  
pp. 265 ◽  
Author(s):  
Violeta Ivanova-Petropulos ◽  
Helmar Wiltsche ◽  
Trajče Stafilov ◽  
Marina Stefova ◽  
Herber Motter ◽  
...  

Major, minor, and trace elements in wines from the Republic of Macedonia were determined in this study. Both inductively coupled plasma–mass spectrometry (ICP-MS) and inductively coupled plasma– optical emission spectrometry (ICP-OES) were used for accurate determination of the concentration of 42 elements (Ag, Al, Au, B, Ba, Be, Bi, Ca, Cd, Ce, Co, Cu, Dy, Er, Eu, Fe, Ga, Gd, Ge, Ho, La, Lu, Mg, Mn, Mo, Na, Nd, Ni, P, Pb, Pr, S, Sm, Tb, Ti, Tl, Tm, U, V, Yb, Zn, Zr) in 25 Macedonian white, rose, and red wines from different wine regions. By means of factor and cluster analyses, the wines were discriminated according to wine type (white vs. red) and geographical origin. The main discriminant elements were B, Ba, Ca, Fe, Mg, Mn, P, and S. 


2018 ◽  
pp. 129-138
Author(s):  
Nikolett Czipa ◽  
Andrea Kántor ◽  
Loránd Alexa ◽  
Béla Kovács

Six macroelements and twelve microelements were identified in thirty-six Hungarian acacia honeys collected from ten counties by inductively coupled plasma optical emission spectrometry (ICP-OES) and inductively coupled plasma mass spectrometry (ICP-MS). One-Way ANOVA (LSD and Dunnett T3 test) and linear discriminant analysis (LDA) were used to determine the statistically verified differences among the honey samples with different geographical origin. Significant differences were established among the samples from different counties in Na, P, S, Fe, Ni, Cu and Sr concentrations. Based on the macroelement content of honeys, the separation of samples with different geographical origin was not successful because the percent of correctly categorised cases was only 64.9%. However, examining the As, B, Ba, Cu, Fe Mn, Ni and Sr concentration, the separation of different groups was convincing since the percent of correctly classified cases was 97.2%. Thus, the examination of microelement concentration may be able to determine the geographical origin of acacia honeys.


Sign in / Sign up

Export Citation Format

Share Document