Electron delocalization and electron density of small polycyclic aromatic hydrocarbons in singlet excited states

2016 ◽  
Vol 18 (17) ◽  
pp. 11792-11799 ◽  
Author(s):  
Mar Estévez-Fregoso ◽  
Jesús Hernández-Trujillo

Electron delocalization allows us to study the similarity and aromaticity of PAHs in excited states, and can be correlated with the excitation energies.

Chemistry ◽  
2021 ◽  
Vol 3 (2) ◽  
pp. 532-549
Author(s):  
Felix Plasser

Polycyclic aromatic hydrocarbons (PAH) are a prominent substance class with a variety of applications in molecular materials science. Their electronic properties crucially depend on the bond topology in ways that are often highly non-intuitive. Here, we study, using density functional theory, the triplet states of four biphenylene-derived PAHs finding dramatically different triplet excitation energies for closely related isomeric structures. These differences are rationalised using a qualitative description of Clar sextets and Baird quartets, quantified in terms of nucleus independent chemical shifts, and represented graphically through a recently developed method for visualising chemical shielding tensors (VIST). The results are further interpreted in terms of a 2D rigid rotor model of aromaticity and through an analysis of the natural transition orbitals involved in the triplet excited states showing good consistency between the different viewpoints. We believe that this work constitutes an important step in consolidating these varying viewpoints of electronically excited states.


2021 ◽  
Author(s):  
Felix Plasser

Polycyclic aromatic hydrocarbons (PAH) are a prominent substance class with a variety of applications in molecular materials science. Their electronic properties crucially depend on the bond topology in ways that are often highly non-intuitive. Here, we study, using density functional theory, the triplet states of four PAHs based on the biphenylene motif finding dramatically different triplet excitation energies for closely related isomeric structures. These differences are rationalised using a qualitative description of Clar sextets and Baird quartets, quantified in terms of nucleus independent chemical shifts, and represented graphically through a recently developed method for visualising chemical shielding tensors (VIST). These results are further interpreted in terms of a 2D rigid rotor model of aromaticity and through an analysis of the natural transition orbitals involved in the triplet excited states showing good consistency between the different viewpoints. We believe that this work constitutes an important step in consolidating these varying viewpoints of electronically excited states.


2021 ◽  
Author(s):  
Felix Plasser

Polycyclic aromatic hydrocarbons (PAH) are a prominent substance class with a variety of applications in molecular materials science. Their electronic properties crucially depend on the bond topology in ways that are often highly non-intuitive. Here, we study, using density functional theory, the triplet states of four PAHs based on the biphenylene motif finding dramatically different triplet excitation energies for closely related isomeric structures. These differences are rationalised using a qualitative description of Clar sextets and Baird quartets, quantified in terms of nucleus independent chemical shifts, and represented graphically through a recently developed method for visualising chemical shielding tensors (VIST). These results are further interpreted in terms of a 2D rigid rotor model of aromaticity and through an analysis of the natural transition orbitals involved in the triplet excited states showing good consistency between the different viewpoints. We believe that this work constitutes an important step in consolidating these varying viewpoints of electronically excited states.


2019 ◽  
Vol 21 (37) ◽  
pp. 21094-21103 ◽  
Author(s):  
Isaac Benkyi ◽  
Enrico Tapavicza ◽  
Heike Fliegl ◽  
Dage Sundholm

Absorption spectra of polycyclic aromatic hydrocarbons have been simulated by using a real-time generating function method that combines adiabatic electronic excitation energies with vibrational energies of the excited states.


Sign in / Sign up

Export Citation Format

Share Document