Thin film nanocomposite embedded with polymethyl methacrylate modified multi-walled carbon nanotubes for CO2 removal

RSC Advances ◽  
2015 ◽  
Vol 5 (40) ◽  
pp. 31683-31690 ◽  
Author(s):  
K. C. Wong ◽  
P. S. Goh ◽  
B. C. Ng ◽  
A. F. Ismail

Thin film nanocomposite loaded with milled polymethyl methacrylate grafted multi-walled carbon nanotubes achieved 29%, 47% and 9% increment in CO2 permeance, CO2/N2 and CO2/CH4 selectivity respectively compared to its thin film composite counterpart.

Membranes ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 476
Author(s):  
Xu Zhang ◽  
Jiuhan Zheng ◽  
Lusheng Xu ◽  
Ming Yin ◽  
Guoliang Zhang ◽  
...  

Novel high-quality thin film nanocomposite (TFN) membranes for enhanced forward osmosis (FO) were first synthesized through organic phase controlled interfacial polymerization by utilizing functional multi-walled carbon nanotubes (MWCNTs). As 3-aminopropyltriethoxysilane (APTES) grafted MWCNTs via an amidation reaction significantly promoted the dispersion in organic solution, MWCNTs-APTES with better compatibility effectively restricted the penetration of trimesoyl chloride (TMC), thus adjusting the morphology and characters of TFN membranes. Various techniques such as Fourier transform infrared spectra (FTIR), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), sessile droplet analysis and FO experiments and reverse osmosis (RO) operation were taken to characterize and evaluate the performance of nanocomposites and membranes. The prepared TFN FO membranes exhibited good hydrophilicity and separation efficiency, in which water flux was about twice those of thin film composite (TFC) membranes without MWCNTs-APTES in both AL-DS and AL-FS modes. Compared with the original TFC membrane, the membrane structural parameter of the novel TFN FO membrane sharply was cut down to 60.7%. Based on the large number of low mass-transfer resistance channels provided by functional nanocomposites, the progresses may provide a facile approach to fabricate novel TFN FO membranes with advanced selectivity and permeability.


2002 ◽  
Vol 366 (1-2) ◽  
pp. 109-114 ◽  
Author(s):  
Young Joon Yoon ◽  
Jun Cheol Bae ◽  
Hong Koo Baik ◽  
SeongJin Cho ◽  
Se-Jong Lee ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3151
Author(s):  
Hee-Ro Chae ◽  
In-Chul Kim ◽  
Young-Nam Kwon

In this study, the effect of graphene oxide nanosheets (GONs) embedded in a thin-film composite (TFC) polyamide (PA) membrane on the acid resistance of the membrane was investigated by comparison with the effect of oxidized single-walled carbon nanotubes (o-SWNTs). Both GONs and o-SWNTs increased the hydrophilicity of the membranes and caused the formation of ridges and clustered bumps on the surfaces, resulting in slightly improved water permeability. However, the o-SWNTs-embedded membrane did not show a difference in acid resistance depending on the concentration of embedded material, but the acid resistance of the GONs-embedded membrane increased with increasing concentration. The acid resistance of the GONs-embedded membranes appears to be mainly due to the barrier effect caused by the nanosheet shape of the GONs along with a sacrificial role of the PA layer protruded by the addition of GONs and the decrease of acid reaction sites by the hydrogen bonding between GONs and PA. When the TFC PA membrane was prepared with a high amount (300 ppm) of the GONs without considering aggregation of GONs, membrane selectivity exceeding 95% was maintained 4.7 times longer than the control TFC membrane. This study shows that the acid resistance can be enhanced by the use of GONs, which give a barrier effect to the membrane.


2012 ◽  
Vol 407 (4) ◽  
pp. 759-764 ◽  
Author(s):  
Ziad Khattari ◽  
Mufeed Maghrabi ◽  
Tony McNally ◽  
Saadi Abdul Jawad

Sign in / Sign up

Export Citation Format

Share Document