parallel magnetic field
Recently Published Documents


TOTAL DOCUMENTS

330
(FIVE YEARS 28)

H-INDEX

33
(FIVE YEARS 3)

2022 ◽  
Vol 924 (2) ◽  
pp. L21
Author(s):  
J. Zhang ◽  
S. Y. Huang ◽  
J. S. He ◽  
T. Y. Wang ◽  
Z. G. Yuan ◽  
...  

Abstract We utilize the data from the Parker Solar Probe mission at its first perihelion to investigate the three-dimensional (3D) anisotropies and scalings of solar wind turbulence for the total, perpendicular, and parallel magnetic-field fluctuations at kinetic scales in the inner heliosphere. By calculating the five-point second-order structure functions, we find that the three characteristic lengths of turbulence eddies for the total and the perpendicular magnetic-field fluctuations in the local reference frame ( L ˆ ⊥ , l ˆ ⊥ , l ˆ ∣ ∣ ) defined with respect to the local mean magnetic field B local feature as l ∣∣ > L ⊥ > l ⊥ in both the transition range and the ion-to-electron scales, but l ∣∣ > L ⊥ ≈ l ⊥ for the parallel magnetic-field fluctuations. For the total magnetic-field fluctuations, the wave-vector anisotropy scalings are characterized by l ∣ ∣ ∝ l ⊥ 0.78 and L ⊥ ∝ l ⊥ 1.02 in the transition range, and they feature as l ∣ ∣ ∝ l ⊥ 0.44 and L ⊥ ∝ l ⊥ 0.73 in the ion-to-electron scales. Still, we need more complete kinetic-scale turbulence models to explain all these observational results.


2021 ◽  
Vol 923 (1) ◽  
pp. 82
Author(s):  
Dylan M. Paré ◽  
Cormac R. Purcell ◽  
Cornelia C. Lang ◽  
Mark R. Morris ◽  
James A. Green

Abstract The Radio Arc is a system of organized nonthermal filaments (NTFs) located within the Galactic center (GC) region of the Milky Way. Recent observations of the Radio Arc NTFs revealed a magnetic field that alternates between being parallel and rotated with respect to the orientation of the filaments. This pattern is in stark contrast to the predominantly parallel magnetic field orientations observed in other GC NTFs. To help elucidate the origin of this pattern, we analyze spectro-polarimetric data of the Radio Arc NTFs using an Australian Telescope Compact Array data set covering the continuous frequency range from ∼4 to 11 GHz at a spectral resolution of 2 MHz. We fit depolarization models to the spectral polarization data to characterize Faraday effects along the line of sight. We assess whether structures local to the Radio Arc NTFs may contribute to the unusual magnetic field orientation. External Faraday effects are identified as the most likely origin of the rotation observed for the Radio Arc NTFs; however, internal Faraday effects are also found to be likely in regions of parallel magnetic field. The increased likelihood of internal Faraday effects in parallel magnetic field regions may be attributed to the effects of structures local to the GC. One such structure could be the Radio Shell local to the Radio Arc NTFs. Future studies are needed to determine whether this alternating magnetic field pattern is present in other multi-stranded NTFs, or is a unique property resulting from the complex interstellar region local to the Radio Arc NTFs.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yan-Hom Li ◽  
Yen-Ju Chen

AbstractThis study determines the effect of the configuration of the magnetic field on the movement of gas bubbles that evolve from platinum electrodes. Oxygen and hydrogen bubbles respectively evolve from the surface of the anode and cathode and behave differently in the presence of a magnetic field due to their paramagnetic and diamagnetic characteristics. A magnetic field perpendicular to the surface of the horizontal electrode causes the bubbles to revolve. Oxygen and hydrogen bubbles revolve in opposite directions to create a swirling flow and spread the bubbles between the electrodes, which increases conductivity and the effectiveness of electrolysis. For vertical electrodes under the influence of a parallel magnetic field, a horizontal Lorentz force effectively detaches the bubbles and increases the conductivity and the effectiveness of electrolysis. However, if the layout of the electrodes and magnetic field results in upward or downward Lorentz forces that counter the buoyancy force, a sluggish flow in the duct inhibits the movement of the bubbles and decreases the conductivity and the charging performance. The results in this study determine the optimal layout for an electrode and a magnetic field to increase the conductivity and the effectiveness of water electrolysis, which is applicable to various fields including energy conversion, biotechnology, and magnetohydrodynamic thruster used in seawater.


2021 ◽  
Author(s):  
Yan-Hom Li ◽  
Yen-Ju Chen

Abstract In this work, the movement of the gas bubbles evolved from the platinum electrodes in the influence of various magnetic field configurations are experimentally investigated. The oxygen and hydrogen bubbles respectively evolve from the surface of anode and cathode have distinctive behaviors in the presence of magnetic fields due to their paramagnetic and diamagnetic characteristics. The magnetic field perpendicular to the surface of the horizontal electrode induces the revolution of the bubbles. The opposite revolution direction between the oxygen and hydrogen bubbles cause the swirling of the flow and spread out the bubbles between the electrode which enhances the conductivity and electrolysis effectiveness. On the other hand, the vertical electrodes in the influence of a parallel magnetic field induce horizontal Lorentz force which effectively spells out the bubbles and increases the conductivity and electrolysis effectiveness as well. However, when the layouts of the electrode and magnetic field result in upward or downward Lorentz forces which competes with the buoyancy force, the sluggish flow in the duct would hinder the movement of the bubbles and decrease the conductivity and charging performance. This phenomenon affects the corresponding natural convection and mass transport as well. These results propose the optimal layout of the electrode and magnetic field which is useful to enhance the conductivity or the effectiveness in water electrolysis.


2021 ◽  
Vol 103 (11) ◽  
Author(s):  
Tom Dvir ◽  
Ayelet Zalic ◽  
Eirik Holm Fyhn ◽  
Morten Amundsen ◽  
Takashi Taniguchi ◽  
...  

2021 ◽  
Vol 81 (2) ◽  
Author(s):  
Gaoqing Cao

AbstractIn this work, we mainly explore the possibility of charged rho ($$\rho ^\pm $$ ρ ± ) superconductor in the presence of parallel magnetic field and rotation within three-flavor Nambu–Jona-Lasino model. By following similar schemes as in the previous studies of charged pion ($$\pi ^\pm $$ π ± ) superfluid, the $$\rho ^\pm $$ ρ ± superconductor is found to be favored for both choices of Schwinger phase in Minkowski and curved spaces. Due to the stability of the internal spin structure, charged rho begins to condensate at a smaller threshold of angular velocity than charged pion for the given large magnetic fields. Even the axial vector meson condensation is checked – the conclusion is that $$\rho ^\pm $$ ρ ± superconductor is the robust ground state at strong magnetic field and fast rotation, which actually sustains to very large angular velocity.


2020 ◽  
Vol 124 (52) ◽  
pp. 11870-11881
Author(s):  
Ryoichi Morimoto ◽  
Miki Miura ◽  
Atsushi Sugiyama ◽  
Makoto Miura ◽  
Yoshinobu Oshikiri ◽  
...  

2020 ◽  
Vol 124 (52) ◽  
pp. 11854-11869 ◽  
Author(s):  
Ryoichi Morimoto ◽  
Miki Miura ◽  
Atsushi Sugiyama ◽  
Makoto Miura ◽  
Yoshinobu Oshikiri ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document