Perovskite solar cells based on small molecule hole transporting materials

2015 ◽  
Vol 3 (36) ◽  
pp. 18329-18344 ◽  
Author(s):  
T. Swetha ◽  
Surya Prakash Singh

The hole transporting materials in perovskite solar cells have received significant attention in recent years as a promising materials capable of developing high performance photovoltaic devices at low cost.

2021 ◽  
Vol 9 (1) ◽  
pp. 301-309
Author(s):  
Sarune Daskeviciute ◽  
Cristina Momblona ◽  
Kasparas Rakstys ◽  
Albertus Adrian Sutanto ◽  
Maryte Daskeviciene ◽  
...  

One-pot synthesized low-cost HTM V1275 exhibits a remarkable performance of 19.3% in PSCs with exceptional stability retaining 125% of the original PCE after 500 h.


2016 ◽  
Vol 94 (4) ◽  
pp. 352-359 ◽  
Author(s):  
Andrew M. Namespetra ◽  
Arthur D. Hendsbee ◽  
Gregory C. Welch ◽  
Ian G. Hill

Three low-cost propeller-shaped small molecules based on a triphenylamine core and the high-performance donor molecule 7,7′-[4,4-bis(2-ethylhexyl)-4H-silolo[3,2-b:4,5-b′]dithiophene-2,6-diyl]bis[6-fluoro-4-(5′-hexyl-[2,2′-bithiophen]-5-yl)benzo[c][1,2,5]thiadiazole] (DTS(FBTTh2)2) were investigated as hole-transporting materials in perovskite solar cells. Each hole-transporting material was designed with highly modular side arms, allowing for different bandgaps and thin-film properties while maintaining a consistent binding energy of the highest occupied molecular orbitals to facilitate hole extraction from the perovskite active layer. Perovskite solar cell devices were fabricated with each of the three triphenylamine-based hole-transporting materials and DTS(FBTTh2)2 and were compared to devices with 2,2′,7,7′-tetrakis(N,N-di-p-methoxyphenylamine)-9,9′-spirobifluorene (spiro-OMeTAD) hole-transporting layers. Each of our triphenylamine hole-transporting materials and DTS(FBTTh2)2 displayed surface morphologies that were considerably rougher than that of spiro-OMeTAD; a factor that may contribute to lower device performance. It was found that using inert, insulating polymers as additives with DTS(FBTTh2)2 reduced the surface roughness, resulting in devices with higher photocurrents.


2016 ◽  
Vol 9 (5) ◽  
pp. 1681-1686 ◽  
Author(s):  
Tadas Malinauskas ◽  
Michael Saliba ◽  
Taisuke Matsui ◽  
Maryte Daskeviciene ◽  
Simona Urnikaite ◽  
...  

Small-molecule fluorene HTMs were synthesized and tested in perovskite solar cell, PCE of up to 19.96% was reached.


Small ◽  
2021 ◽  
pp. 2100783
Author(s):  
Vellaichamy Joseph ◽  
Albertus Adrian Sutanto ◽  
Cansu Igci ◽  
Olga A. Syzgantseva ◽  
Vygintas Jankauskas ◽  
...  

2021 ◽  
Author(s):  
Kun-Mu Lee ◽  
Jui-Yu Yang ◽  
Ping-Sheng Lai ◽  
Ke-Jyun Luo ◽  
Ting Yu Yang ◽  
...  

A new cyclopentadithiophene (CPDT)-based organic small molecule serves as an efficient dopant-free hole transporting material (HTM) for perovskite solar cells (PSCs). Upon incorporation of two carbazole groups, the resulting CPDT-based...


Author(s):  
Qian Chen ◽  
Puhang Chen ◽  
Hongyuan Liu ◽  
Xiaorui Liu

Computational actuation on design of small-molecule triphenylamine derivative-based hole-transporting materials (HTMs) is a high-efficient way to acquire potential HTMs for perovskite solar cells (PSCs). In the work, on basis of...


Sign in / Sign up

Export Citation Format

Share Document