theoretical calculation
Recently Published Documents


TOTAL DOCUMENTS

1992
(FIVE YEARS 376)

H-INDEX

57
(FIVE YEARS 12)

2022 ◽  
Vol 258 ◽  
pp. 01004
Author(s):  
Gilberto Colangelo

In this talk I reviewed the data-driven theoretical calculation of the hadronic contributions to the anomalous magnetic moment of the muon in the Standard Model mainly as it has been presented in the White Paper, but also including the most recent developments. All this is presented in the light of the new measurement of (g − 2)μ recently released by the Fermilab experiment, which led to an increase of the discrepancy with the Standard Model from 3.7 to 4.2σ.


2022 ◽  
pp. 313-379
Author(s):  
Ruihong Zhang ◽  
Chaofeng Zhao ◽  
Yingzhong Huo ◽  
Yanan Han ◽  
Jiahui Hong ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8392
Author(s):  
Lei Kou ◽  
Zhihui Xiong ◽  
Hao Cui ◽  
Jinjie Zhao

At present, there is no clear design standard for segmental joints of large-diameter shield tunnels under high water pressure. In this paper, a theoretical calculation model for the bending stiffness of segmental joints under high water pressure is proposed. The numerical simulation method is used to investigate the failure and crack formation processes of single-layer and double-layer lining segments under large axial forces. The effects of axial force, bolt strength, and concrete strength on the bending stiffness of joints are then studied using a theoretical calculation model of segmental joints. The results show that under extremely high water pressure, the influence of double lining on joint stiffness is limited. It is more rational and safe to compute the bending stiffness of segmental joints using this theoretical model rather than the numerical simulation method. The parameter analysis reveals that increasing the bolt strength has a minor impact on bending stiffness and deformation, whereas increasing the concrete strength has the opposite effect. The influence of ultimate bearing capacity and deformation decreases non-linearly as the axial force increases.


Author(s):  
Fumihiro Sagane ◽  
Kenta Ogi ◽  
Akinori Konno ◽  
Kiyoshi Kanamura

Abstract The effect of the coordination ability of the solvent species on the Mg plating/stripping behavior was investigated. The Mg plating reaction in Mg(N(CF3SO2)2)2/diglyme was inhibited by the equimolar of 15-crown-5 ether (15C5) to Mg2+-ion. On the other hand, Mg plating took place in the solution by reducing the amount of 15C5 less than that of Mg2+-ion. FT-IR spectra showed that 15C5 preferentially solvated Mg2+-ion in the glyme based solutions. The theoretical calculation indicated the interaction between Mg2+-ion and each O atom in 15C5 was stronger than that with diglyme or larger sized crown ether. The results showed that the coordination ability of the solvent species could be the critical for the Mg plating reaction.


Sign in / Sign up

Export Citation Format

Share Document