Highly thermally conductive polymer nanocomposites based on boron nitride nanosheets decorated with silver nanoparticles

RSC Advances ◽  
2016 ◽  
Vol 6 (47) ◽  
pp. 41630-41636 ◽  
Author(s):  
Fangfang Wang ◽  
Yimin Yao ◽  
Xiaoliang Zeng ◽  
Tao Huang ◽  
Rong Sun ◽  
...  

The interfacial thermal resistance among boron nitride nanosheets are reduced by sintering silver nanoparticles deposited on boron nitride nanosheets surfaces, beneficial for the forming networks.

Research ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-13 ◽  
Author(s):  
Kunpeng Ruan ◽  
Yongqiang Guo ◽  
Chuyao Lu ◽  
Xuetao Shi ◽  
Tengbo Ma ◽  
...  

The developing flexible electronic equipment are greatly affected by the rapid accumulation of heat, which is urgent to be solved by thermally conductive polymer composite films. However, the interfacial thermal resistance (ITR) and the phonon scattering at the interfaces are the main bottlenecks limiting the rapid and efficient improvement of thermal conductivity coefficients (λ) of the polymer composite films. Moreover, few researches were focused on characterizing ITR and phonon scattering in thermally conductive polymer composite films. In this paper, graphene oxide (GO) was aminated (NH2-GO) and reduced (NH2-rGO), then NH2-rGO/polyimide (NH2-rGO/PI) thermally conductive composite films were fabricated. Raman spectroscopy was utilized to innovatively characterize phonon scattering and ITR at the interfaces in NH2-rGO/PI thermally conductive composite films, revealing the interfacial thermal conduction mechanism, proving that the amination optimized the interfaces between NH2-rGO and PI, reduced phonon scattering and ITR, and ultimately improved the interfacial thermal conduction. The in-plane λ (λ∥) and through-plane λ (λ⊥) of 15 wt% NH2-rGO/PI thermally conductive composite films at room temperature were, respectively, 7.13 W/mK and 0.74 W/mK, 8.2 times λ∥ (0.87 W/mK) and 3.5 times λ⊥ (0.21 W/mK) of pure PI film, also significantly higher than λ∥ (5.50 W/mK) and λ⊥ (0.62 W/mK) of 15 wt% rGO/PI thermally conductive composite films. Calculation based on the effective medium theory model proved that ITR was reduced via the amination of rGO. Infrared thermal imaging and finite element simulation showed that NH2-rGO/PI thermally conductive composite films obtained excellent heat dissipation and efficient thermal management capabilities on the light-emitting diodes bulbs, 5G high-power chips, and other electronic equipment, which are easy to generate heat severely.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Junwei Gu ◽  
Kunpeng Ruan

AbstractRapid development of energy, electrical and electronic technologies has put forward higher requirements for the thermal conductivities of polymers and their composites. However, the thermal conductivity coefficient (λ) values of prepared thermally conductive polymer composites are still difficult to achieve expectations, which has become the bottleneck in the fields of thermally conductive polymer composites. Aimed at that, based on the accumulation of the previous research works by related researchers and our research group, this paper proposes three possible directions for breaking through the bottlenecks: (1) preparing and synthesizing intrinsically thermally conductive polymers, (2) reducing the interfacial thermal resistance in thermally conductive polymer composites, and (3) establishing suitable thermal conduction models and studying inner thermal conduction mechanism to guide experimental optimization. Also, the future development trends of the three above-mentioned directions are foreseen, hoping to provide certain basis and guidance for the preparation, researches and development of thermally conductive polymers and their composites.


Sign in / Sign up

Export Citation Format

Share Document