poly caprolactone
Recently Published Documents


TOTAL DOCUMENTS

639
(FIVE YEARS 122)

H-INDEX

58
(FIVE YEARS 7)

Author(s):  
Indika Chandrasiri ◽  
Mahesh Loku Yaddehige ◽  
Bo Li ◽  
Yuzhe Sun ◽  
William E. Meador ◽  
...  

2021 ◽  
Vol 23 (1) ◽  
pp. 260
Author(s):  
Megane Beldjilali Labro ◽  
Rachid Jellali ◽  
Alexander David Brown ◽  
Alejandro Garcia Garcia ◽  
Augustin Lerebours ◽  
...  

The development of new, viable, and functional engineered tissue is a complex and challenging task. Skeletal muscle constructs have specific requirements as cells are sensitive to the stiffness, geometry of the materials, and biological micro-environment. The aim of this study was thus to design and characterize a multi-scale scaffold and to evaluate it regarding the differentiation process of C2C12 skeletal myoblasts. The significance of the work lies in the microfabrication of lines of polyethylene glycol, on poly(-caprolactone) nanofiber sheets obtained using the electrospinning process, coated or not with gold nanoparticles to act as a potential substrate for electrical stimulation. The differentiation of C2C12 cells was studied over a period of seven days and quantified through both expression of specific genes, and analysis of the myotubes’ alignment and length using confocal microscopy. We demonstrated that our multiscale bio-construct presented tunable mechanical properties and supported the different stages skeletal muscle,as well as improving the parallel orientation of the myotubes with a variation of less than 15°. These scaffolds showed the ability of sustained myogenic differentiation by enhancing the organization of reconstructed skeletal muscle. Moreover, they may be suitable for applications in mechanical and electrical stimulation to mimic the muscle’s physiological functions.


2021 ◽  
Vol 6 ◽  
pp. 100158
Author(s):  
Sabia Kouser ◽  
Ashwini Prabhu ◽  
Sareen Sheik ◽  
Kalappa Prashantha ◽  
G.K. Nagaraja ◽  
...  

Biopolymers ◽  
2021 ◽  
Author(s):  
Minami Yoshida ◽  
Paul R. Turner ◽  
Christopher John McAdam ◽  
Mohammed Azam Ali ◽  
Jaydee D. Cabral

Nanomedicine ◽  
2021 ◽  
Author(s):  
Reza Hosseinpour-Moghadam ◽  
Shahram Rabbani ◽  
Arash Mahboubi ◽  
Sayyed Abbas Tabatabai ◽  
Azadeh Haeri

Aim: To develop quercetin-loaded poly(caprolactone) (PCL)/soybean phosphatidylcholine (PC) films coated with silver (Ag) to prevent the formation of postoperative adhesions (POA). Materials & methods: Films were prepared using the solvent casting method, coated with Ag, and underwent  in vitro tests. In vivo studies were conducted employing an animal model of sidewall defect and cecum abrasion. Results: Films showed sustained release behavior of quercetin and Ag. Coating films with Ag improved their antimicrobial activity. In vivo studies confirmed superior antiadhesion properties of films compared with the control groups evaluated by gross observation, histochemical staining and immunohistochemistry analyses. Conclusion: Ag-Q-PCL-PC films are a potential candidate to prevent POA by acting as a sustained release delivery system and physical barrier.


2021 ◽  
Vol 22 (20) ◽  
pp. 11200
Author(s):  
Jasmijn V. Korpershoek ◽  
Mylène de Ruijter ◽  
Bastiaan F. Terhaard ◽  
Michella H. Hagmeijer ◽  
Daniël B.F. Saris ◽  
...  

Meniscus injury and meniscectomy are strongly related to osteoarthritis, thus there is a clinical need for meniscus replacement. The purpose of this study is to create a meniscus scaffold with micro-scale circumferential and radial fibres suitable for a one-stage cell-based treatment. Poly-caprolactone-based scaffolds with three different architectures were made using melt electrowriting (MEW) technology and their in vitro performance was compared with scaffolds made using fused-deposition modelling (FDM) and with the clinically used Collagen Meniscus Implants® (CMI®). The scaffolds were seeded with meniscus and mesenchymal stromal cells (MSCs) in fibrin gel and cultured for 28 d. A basal level of proteoglycan production was demonstrated in MEW scaffolds, the CMI®, and fibrin gel control, yet within the FDM scaffolds less proteoglycan production was observed. Compressive properties were assessed under uniaxial confined compression after 1 and 28 d of culture. The MEW scaffolds showed a higher Young’s modulus when compared to the CMI® scaffolds and a higher yield point compared to FDM scaffolds. This study demonstrates the feasibility of creating a wedge-shaped meniscus scaffold with MEW using medical-grade materials and seeding the scaffold with a clinically-feasible cell number and -type for potential translation as a one-stage treatment.


Coatings ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1239
Author(s):  
Zhongxian Xi ◽  
Chengqing Yuan ◽  
Xiuqin Bai ◽  
Chun Wang ◽  
Anne Neville

In this study, the degradable superhydrophobic Mg/P/Z/F/H (magnesium/poly(-caprolactone)/zinc oxide/1H,1H,2H,2H-perfluorodecyltriethoxysilane (PFDTES)/heating process) composite materials were prepared through dip-coating method and heating process, for enhancing the corrosion resistance of the AZ91D magnesium alloys. The electrochemical measurements revealed that the Mg/P/Z/F/H materials significantly improved the corrosion resistance of the magnesium alloys in 3.5 wt.% NaCl. The Mg/P/Z/F/H composite materials exhibited efficient self-cleaning properties, good adhesion strength, and stability in wet atmosphere.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5797
Author(s):  
Takafumi Zako ◽  
Shoko Matsushita ◽  
Toru Hoshi ◽  
Takao Aoyagi

In this study, the introduction of a positive charge on the surface of a shape memory material was investigated to enhance cell affinity. To achieve this, the direct chemical modification of a material surface was proposed. Sheet-type, crosslinked poly(caprolactone-co-α-bromo-ɤ-butyrolactone) (poly(CL-co-BrBL)) were prepared, and the direct reaction of amino compounds with bromo groups was conducted on the material surface with a positive charge. Branched poly(CL-co-BrBL) was prepared, followed by the introduction of methacryloyl groups to each chain end. Using the branched macromonomers, stable and sheet-type materials were derived through UV-light irradiation. Then, the materials were soaked in an amino compound solution to react with the bromo groups under various conditions. Differential scanning calorimetry and surface analysis of the modified materials indicated that 10 vol% of N, N-dimethylethylenediamine in n-hexane and 1 h soaking time were optimal to maintain the inherent thermal properties. The achievement of increased luminance and a positive zeta potential proved that the direct modification method effectively introduced the positive charge only on the surface, thereby enhancing cell affinity.


2021 ◽  
Vol 14 (9) ◽  
pp. 921
Author(s):  
Juan Domínguez-Robles ◽  
Luis Diaz-Gomez ◽  
Emilia Utomo ◽  
Tingjun Shen ◽  
Camila J. Picco ◽  
...  

Small-diameter synthetic vascular grafts are required for surgical bypass grafting when there is a lack of suitable autologous vessels due to different reasons, such as previous operations. Thrombosis is the main cause of failure of small-diameter synthetic vascular grafts when used for this revascularization technique. Therefore, the development of biodegradable vascular grafts capable of providing a localized and sustained antithrombotic drug release mark a major step forward in the fight against cardiovascular diseases, which are the leading cause of death globally. The present paper describes the use of an extrusion-based 3D printing technology for the production of biodegradable antiplatelet tubular grafts for cardiovascular applications. For this purpose, acetylsalicylic acid (ASA) was chosen as a model molecule due to its antiplatelet activity. Poly(caprolactone) and ASA were combined for the fabrication and characterization of ASA-loaded tubular grafts. Moreover, rifampicin (RIF) was added to the formulation containing the higher ASA loading, as a model molecule that can be used to prevent vascular prosthesis infections. The produced tubular grafts were fully characterized through multiple techniques and the last step was to evaluate their drug release, antiplatelet and antimicrobial activity and cytocompatibility. The results suggested that these materials were capable of providing a sustained ASA release for periods of up to 2 weeks. Tubular grafts containing 10% (w/w) of ASA showed lower platelet adhesion onto the surface than the blank and grafts containing 5% (w/w) of ASA. Moreover, tubular grafts scaffolds containing 1% (w/w) of RIF were capable of inhibiting the growth of Staphylococcus aureus. Finally, the evaluation of the cytocompatibility of the scaffold samples revealed that the incorporation of ASA or RIF into the composition did not compromise cell viability and proliferation at short incubation periods (24 h).


Sign in / Sign up

Export Citation Format

Share Document