Research
Latest Publications


TOTAL DOCUMENTS

426
(FIVE YEARS 406)

H-INDEX

14
(FIVE YEARS 13)

Published By Aaas00

2639-5274, 2639-5274

Research ◽  
2022 ◽  
Vol 2022 ◽  
pp. 1-12
Author(s):  
Chunyu Tang ◽  
Fan Yang ◽  
Markus Antonietti

Carbon emission from soil is not only one of the major sources of greenhouse gases but also threatens biological diversity, agricultural productivity, and food security. Regulation and control of the soil carbon pool are political practices in many countries around the globe. Carbon pool management in engineering sense is much bigger and beyond laws and monitoring, as it has to contain proactive elements to restore active carbon. Biogeochemistry teaches us that soil microorganisms are crucial to manage the carbon content effectively. Adding carbon materials to soil is thereby not directly sequestration, as interaction of appropriately designed materials with the soil microbiome can result in both: metabolization and thereby nonsustainable use of the added carbon, or—more favorably—a biological amplification of human efforts and sequestration of extra CO2 by microbial growth. We review here potential approaches to govern soil carbon, with a special focus set on the emerging practice of adding manufactured carbon materials to control soil carbon and its biological dynamics. Notably, research on so-called “biochar” is already relatively mature, while the role of artificial humic substance (A-HS) in microbial carbon sequestration is still in the developing stage. However, it is shown that the preparation and application of A-HS are large biological levers, as they directly interact with the environment and community building of the biological soil system. We believe that A-HS can play a central role in stabilizing carbon pools in soil.


Research ◽  
2022 ◽  
Vol 2022 ◽  
pp. 1-12
Author(s):  
Dongqing Lin ◽  
Wenhua Zhang ◽  
Hang Yin ◽  
Haixia Hu ◽  
Yang Li ◽  
...  

High dielectric constants in organic semiconductors have been identified as a central challenge for the improvement in not only piezoelectric, pyroelectric, and ferroelectric effects but also photoelectric conversion efficiency in OPVs, carrier mobility in OFETs, and charge density in charge-trapping memories. Herein, we report an ultralong persistence length (lp≈41 nm) effect of spiro-fused organic nanopolymers on dielectric properties, together with excitonic and charge carrier behaviors. The state-of-the-art nanopolymers, namely, nanopolyspirogrids (NPSGs), are synthesized via the simple cross-scale Friedel-Crafts polygridization of A2B2-type nanomonomers. The high dielectric constant (k=8.43) of NPSG is firstly achieved by locking spiro-polygridization effect that results in the enhancement of dipole polarization. When doping into a polystyrene-based dielectric layer, such a high-k feature of NPSG increases the field-effect carrier mobility from 0.20 to 0.90 cm2 V-1 s-1 in pentacene OFET devices. Meanwhile, amorphous NPSG film exhibits an ultralow energy disorder (<50 meV) for an excellent zero-field hole mobility of 3.94×10−3 cm2 V−1 s−1, surpassing most of the amorphous π-conjugated polymers. Organic nanopolymers with high dielectric constants open a new way to break through the bottleneck of efficiency and multifunctionality in the blueprint of the fourth-generation semiconductors.


Research ◽  
2022 ◽  
Vol 2022 ◽  
pp. 1-10
Author(s):  
Nerio Andrés Montoya ◽  
Valeria Criscuolo ◽  
Andrea Lo Presti ◽  
Raffaele Vecchione ◽  
Christian Falconi

Four-wire measurements have been introduced by Lord Kelvin in 1861 and have since become the standard technique for characterizing small resistances and impedances. However, high-density 4-wire measurements are generally complex, time-consuming, and inefficient because of constraints on interconnects, pads, external wires, and mechanical contacts, thus reducing reproducibility, statistical significance, and throughput. Here, we introduce, systematically design, analyze, and experimentally validate zero interconnect networks interfaced to external instrumentation by couples of twin wire. 3D-printed holders with magnets, interconnects, nonadhesive layers, and spacers can effortlessly establish excellent electrical connections with tunable or minimum contact forces and enable accurate measurements even for delicate devices, such as thin metals on soft polymers. As an example, we measured all the resistances of a twin-wire 29-resistor network made of silver-nanoparticle ink printed on polyimide, paper, or photo paper, including during sintering or temperature calibration, resulting in an unprecedentedly easy and accurate characterization of both resistivity and its temperature coefficient. The theoretical framework and experimental strategies reported here represent a breakthrough toward zero interconnect, simple, and efficient high-density 4-wire characterizations, can be generalized to other 4-wire measurements (impedances, sensors) and can open the way to more statistically meaningful and reproducible analyses of materials, high-throughput measurements, and minimally invasive characterizations of biomaterials.


Research ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Jinlong Ren ◽  
Yingchao Liu ◽  
Xingqiang Shi ◽  
Guangcun Shan ◽  
Mingming Tang ◽  
...  

Multifunctionality, interference-free signal readout, and quantum effect are important considerations for flexible sensors equipped within a single unit towards further miniaturization. To address these criteria, we present the slotted carbon nanotube (CNT) junction features tunable Fano resonance driven by flexoelectricity, which could serve as an ideal multimodal sensory receptor. Based on extensive ab initio calculations, we find that the effective Fano factor can be used as a temperature-insensitive extrinsic variable for sensing the bending strain, and the Seebeck coefficient can be used as a strain-insensitive intrinsic variable for detecting temperature. Thus, this dual-parameter permits simultaneous sensing of temperature and strain without signal interference. We further demonstrate the applicability of this slotted junction to ultrasensitive chemical sensing which enables precise determination of donor-type, acceptor-type, and inert molecules. This is due to the enhancement or counterbalance between flexoelectric and chemical gating. Flexoelectric gating would preserve the electron–hole symmetry of the slotted junction whereas chemical gating would break it. As a proof-of-concept demonstration, the slotted CNT junction provides an excellent quantum platform for the development of multistimuli sensation in artificial intelligence at the molecular scale.


Research ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-4
Author(s):  
Qiangzhen Yang ◽  
Ali Alamdar Shah Syed ◽  
Aamir Fahira ◽  
Yongyong Shi

The spread of the latest SARS-CoV-2 variant Omicron is particularly concerning because of the large number of mutations present in its genome and lack of knowledge about how these mutations would affect the current SARS-CoV-2 vaccines and treatments. Here, by performing phylogenetic analysis using the Omicron spike (S) protein sequence, we found that the Omicron S protein presented the longest evolutionary distance in relation to the other SARS-CoV-2 variants. We predicted the structures of S, M, and N proteins of the Omicron variant using AlphaFold2 and investigated how the mutations have affected the S protein and its parts, S1 NTD and RBD, in detail. We found many amino acids on RBD were mutated, which may influence the interactions between the RBD and ACE2, while also showing the S309 antibody could still be capable of neutralizing Omicron RBD. The Omicron S1 NTD structures display significant differences from the original strain, which could lead to reduced recognition by antibodies resulting in potential immune escape and decreased effectiveness of the existing vaccines. However, this study of the Omicron variant was mainly limited to structural predictions, and these findings should be explored and verified by subsequent experiments. This study provided basic data of the Omicron protein structures that lay the groundwork for future studies related to the SARS-CoV-2 Omicron variant.


Research ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Xiangyu Ou ◽  
Xue Chen ◽  
Xianning Xu ◽  
Lili Xie ◽  
Xiaofeng Chen ◽  
...  

X-ray imaging is a low-cost, powerful technology that has been extensively used in medical diagnosis and industrial nondestructive inspection. The ability of X-rays to penetrate through the body presents great advances for noninvasive imaging of its internal structure. In particular, the technological importance of X-ray imaging has led to the rapid development of high-performance X-ray detectors and the associated imaging applications. Here, we present an overview of the recent development of X-ray imaging-related technologies since the discovery of X-rays in the 1890s and discuss the fundamental mechanism of diverse X-ray imaging instruments, as well as their advantages and disadvantages on X-ray imaging performance. We also highlight various applications of advanced X-ray imaging in a diversity of fields. We further discuss future research directions and challenges in developing advanced next-generation materials that are crucial to the fabrication of flexible, low-dose, high-resolution X-ray imaging detectors.


Research ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Luyao Zhu ◽  
Changmin Shao ◽  
Hanxu Chen ◽  
Zhuoyue Chen ◽  
Yuanjin Zhao

In the drug therapy of tumor, efficient and stable drug screening platforms are required since the drug efficacy varies individually. Here, inspired by the microstructures of hepatic lobules, in which hepatocytes obtain nutrients from both capillary vessel and the central vein, we present a novel hierarchical hydrogel system with ordered micro-nano structure for liver cancer-on-a-chip construction and drug screening. The hierarchical hydrogel system was fabricated by using pregel to fill and replicate self-assembled colloidal crystal arrays and microcolumn array template. Due to the synergistic effect of its interconnected micro-nano structures, the resultant system could not only precisely control the size of cell spheroids but also realize adequate nutrient supply of cell spheroids. We have demonstrated that by integrating the hierarchical hydrogel system into a multichannel concentration gradients microfluidic chip, a functional liver cancer-on-a-chip could be constructed for high-throughput drug screening with good repeatability and high accuracy. These results indicated that the hierarchical hydrogel system and its derived liver cancer-on-a-chip are ideal platforms for drug screening and have great application potential in the field of personalized medicine.


Research ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Mengjiao Pei ◽  
Changjin Wan ◽  
Qiong Chang ◽  
Jianhang Guo ◽  
Sai Jiang ◽  
...  

Associative learning is a critical learning principle uniting discrete ideas and percepts to improve individuals’ adaptability. However, enabling high tunability of the association processes as in biological counterparts and thus integration of multiple signals from the environment, ideally in a single device, is challenging. Here, we fabricate an organic ferroelectric neuromem capable of monadically implementing optically modulated associative learning. This approach couples the photogating effect at the interface with ferroelectric polarization switching, enabling highly tunable optical modulation of charge carriers. Our device acts as a smarter Pavlovian dog exhibiting adjustable associative learning with the training cycles tuned from thirteen to two. In particular, we obtain a large output difference (>103), which is very similar to the all-or-nothing biological sensory/motor neuron spiking with decrementless conduction. As proof-of-concept demonstrations, photoferroelectric coupling-based applications in cryptography and logic gates are achieved in a single device, indicating compatibility with biological and digital data processing.


Research ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Qianying Lu ◽  
Yunlei Zhou ◽  
Xiangfei Yin ◽  
Shitai Cao ◽  
Xiaoliang Wang ◽  
...  

In contrast to ionically conductive liquids and gels, a new type of yield-stress fluid featuring reversible transitions between solid and liquid states is introduced in this study as a printable, ultrastretchable, and transparent conductor. The fluid is formulated by dispersing silica nanoparticles into the concentrated aqueous electrolyte. The as-printed features show solid-state appearances to allow facile encapsulation with elastomers. The transition into liquid-like behavior upon tensile deformations is the enabler for ultrahigh stretchability up to the fracture strain of the elastomer. Successful integrations of yield-stress fluid electrodes in highly stretchable strain sensors and light-emitting devices illustrate the practical suitability. The yield-stress fluid represents an attractive building block for stretchable electronic devices and systems in terms of giant deformability, high ionic conductivity, excellent optical transmittance, and compatibility with various elastomers.


Research ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Zhuanghe Ren ◽  
Xin Zhang ◽  
Hai-Wen Li ◽  
Zhenguo Huang ◽  
Jianjiang Hu ◽  
...  

Sodium alanate (NaAlH4) with 5.6 wt% of hydrogen capacity suffers seriously from the sluggish kinetics for reversible hydrogen storage. Ti-based dopants such as TiCl4, TiCl3, TiF3, and TiO2 are prominent in enhancing the dehydrogenation kinetics and hence reducing the operation temperature. The tradeoff, however, is a considerable decrease of the reversible hydrogen capacity, which largely lowers the practical value of NaAlH4. Here, we successfully synthesized a new Ti-dopant, i.e., TiH2 as nanoplates with ~50 nm in lateral size and ~15 nm in thickness by an ultrasound-driven metathesis reaction between TiCl4 and LiH in THF with graphene as supports (denoted as NP-TiH2@G). Doping of 7 wt% NP-TiH2@G enables a full dehydrogenation of NaAlH4 at 80°C and rehydrogenation at 30°C under 100 atm H2 with a reversible hydrogen capacity of 5 wt%, superior to all literature results reported so far. This indicates that nanostructured TiH2 is much more effective than Ti-dopants in improving the hydrogen storage performance of NaAlH4. Our finding not only pushes the practical application of NaAlH4 forward greatly but also opens up new opportunities to tailor the kinetics with the minimal capacity loss.


Sign in / Sign up

Export Citation Format

Share Document