Exfoliation of hexagonal boron nitride assisted with hierarchical ionic fragments by ball‐milling for achieving high thermally conductive polymer nanocomposite

2021 ◽  
Author(s):  
Xiangdao Nie ◽  
Xinxin Sang ◽  
Yongsheng Fu ◽  
Xianbin Shi ◽  
Kun Zheng ◽  
...  
2016 ◽  
Vol 100 (2) ◽  
pp. 515-519 ◽  
Author(s):  
Ching-cheh Hung ◽  
Janet Hurst ◽  
Diana Santiago ◽  
Maricela Lizcano ◽  
Marisabel Kelly

Nanomaterials ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 938 ◽  
Author(s):  
Weijie Liang ◽  
Xin Ge ◽  
Jianfang Ge ◽  
Tiehu Li ◽  
Tingkai Zhao ◽  
...  

The thermally conductive properties of silicone thermal grease enhanced by hexagonal boron nitride (hBN) nanosheets as a filler are relevant to the field of lightweight polymer-based thermal interface materials. However, the enhancements are restricted by the amount of hBN nanosheets added, owing to a dramatic increase in the viscosity of silicone thermal grease. To this end, a rational structural design of the filler is needed to ensure the viable development of the composite material. Using reduced graphene oxide (RGO) as substrate, three-dimensional (3D) heterostructured reduced graphene oxide-hexagonal boron nitride (RGO-hBN)-stacking material was constructed by self-assembly of hBN nanosheets on the surface of RGO with the assistance of binder for silicone thermal grease. Compared with hBN nanosheets, 3D RGO-hBN more effectively improves the thermally conductive properties of silicone thermal grease, which is attributed to the introduction of graphene and its phonon-matching structural characteristics. RGO-hBN/silicone thermal grease with lower viscosity exhibits higher thermal conductivity, lower thermal resistance and better thermal management capability than those of hBN/silicone thermal grease at the same filler content. It is feasible to develop polymer-based thermal interface materials with good thermal transport performance for heat removal of modern electronics utilising graphene-supported hBN as the filler at low loading levels.


2019 ◽  
Vol 3 (3) ◽  
pp. 774-785 ◽  
Author(s):  
Deepalekshmi Ponnamma ◽  
Mariam Al Ali Al-Maadeed

Designing a piezoelectric nanogenerator based on ternary polyvinylidene fluoride hexafluoropropylene (PVDF-HFP) nanocomposite containing ceramic BaTiO3 and hexagonal boron nitride nanomaterials.


RSC Advances ◽  
2018 ◽  
Vol 8 (40) ◽  
pp. 22846-22852 ◽  
Author(s):  
Seokgyu Ryu ◽  
Taeseob Oh ◽  
Jooheon Kim

Boron nitride (BN) particles surface-treated with different amounts of aniline trimer (AT) were used to prepare thermally conductive polymer composites with epoxy-terminated dimethylsiloxane (ETDS).


Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1652
Author(s):  
Nan Yang ◽  
Haifeng Ji ◽  
Xiaoxia Jiang ◽  
Xiongwei Qu ◽  
Xiaojie Zhang ◽  
...  

Hexagonal boron nitride nanoplatelets (BNNPs) have attracted widespread attention due to their unique physical properties and their peeling from the base material. Mechanical exfoliation is a simple, scalable approach to produce single-layer or few-layer BNNPs. In this work, two amino acid grafted boron nitride nanoplatelets, Lys@BNNP and Glu@BNNP, were successfully prepared via ball milling of h-BN with L-Lysine and L-Glutamic acid, respectively. It was found that the dispersion state of Lys@BNNP and Glu@BNNP in water had been effectively stabilized due to the introduction of amino acid moieties which contained a hydrophilic carboxyl group. PVA hydrogel composites with Lys@BNNP and Glu@BNNP as functional fillers were constructed and extensively studied. With 11.3 wt% Lys@BNNP incorporated, the thermal conductivity of Lys@BNNP/PVA hydrogel composite was up to 0.91 W m−1K−1, increased by 78%, comparing to the neat PVA hydrogel. Meanwhile, the mechanical and self-healing properties of the composites were simultaneously largely enhanced.


Sign in / Sign up

Export Citation Format

Share Document