Neuroprotective effects of nitidine in Parkinson's disease models through inhibiting microglia activation: role of the Jak2–Stat3 pathway

RSC Advances ◽  
2016 ◽  
Vol 6 (75) ◽  
pp. 71328-71337 ◽  
Author(s):  
Bao Wang ◽  
Xing-qin Wang ◽  
Shao-song Yang ◽  
Xi Liu ◽  
Da-yun Feng ◽  
...  

In this work we found that nitidine could significantly suppress microglial activationviathe Jak2–Stat3 pathway and obviously improve behavioural function in Parkinson's disease (PD) animal models, which sheds light on PD treatment.

2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Keya Li ◽  
Xinyue Li ◽  
Guiying Shi ◽  
Xuepei Lei ◽  
Yiying Huang ◽  
...  

AbstractAnimal models provide an opportunity to assess the optimal treatment way and the underlying mechanisms of direct clinical application of adipose-derived stem cells (ADSCs). Previous studies have evaluated the effects of primitive and induced ADSCs in animal models of Parkinson’s disease (PD). Here, eight databases were systematically searched for studies on the effects and in vivo changes caused by ADSC intervention. Quality assessment was conducted using a 10-item risk of bias tool. For the subsequent meta-analysis, study characteristics were extracted and effect sizes were computed. Ten out of 2324 published articles (n = 169 animals) were selected for further meta-analysis. After ADSC therapy, the rotation behavior (10 experiments, n = 156 animals) and rotarod performance (3 experiments, n = 54 animals) were improved (P < 0.000 01 and P = 0.000 3, respectively). The rotation behavior test reflected functional recovery, which may be due to the neurogenesis from neuronally differentiated ADSCs, resulting in a higher pooled effect size of standard mean difference (SMD) (− 2.59; 95% CI, − 3.57 to − 1.61) when compared to that of primitive cells (− 2.18; 95% CI, − 3.29 to − 1.07). Stratified analyses by different time intervals indicated that ADSC intervention exhibited a long-term effect. Following the transplantation of ADSCs, tyrosine hydroxylase-positive neurons recovered in the lesion area with pooled SMD of 13.36 [6.85, 19.86]. Transplantation of ADSCs is a therapeutic option that shows long-lasting effects in animal models of PD. The potential mechanisms of ADSCs involve neurogenesis and neuroprotective effects. The standardized induction of neural form of transplanted ADSCs can lead to a future application in clinical practice.


2021 ◽  
Vol 12 ◽  
Author(s):  
Cheng-Fu Su ◽  
Li Jiang ◽  
Xiao-Wen Zhang ◽  
Ashok Iyaswamy ◽  
Min Li

Parkinson’s disease (PD) is a common neurodegenerative disease featured by progressive degeneration of nigrostriatal dopaminergic neurons (DA) accompanied with motor function impairment. Accumulating evidence has demonstrated that natural compounds from herbs have potent anti-PD efficacy in PD models. Among those compounds, resveratrol, a polyphenol found in many common plants and fruits, is more effective against PD. Resveratrol has displayed a potent neuroprotective efficacy in several PD animal models. However, there is still no systematic analysis of the quality of methodological design of these studies, nor of their results. In this review, we retrieved and analyzed 18 studies describing the therapeutic effect of resveratrol on PD animal models. There are 5 main kinds of PD rodent models involved in the 18 articles, including chemical-induced (MPTP, rotenone, 6-OHDA, paraquat, and maneb) and transgenic PD models. The neuroprotective mechanisms of resveratrol were mainly concentrated on the antioxidation, anti-inflammation, ameliorating mitochondrial dysfunction, and motor function. We discussed the disadvantages of different PD animal models, and we used meta-analysis approach to evaluate the results of the selected studies and used SYRCLE’s risk of bias tool to evaluate the methodological quality. Our analytical approach minimized the bias of different studies. We have also summarized the pharmacological mechanisms of resveratrol on PD models as reported by the researchers. The results of this study support the notion that resveratrol has significant neuroprotective effects on different PD models quantified using qualitative and quantitative methods. The collective information in our review can guide researchers to further plan their future experiments without any hassle regarding preclinical and clinical studies. In addition, this collective assessment of animal studies can provide a qualitative analysis of different PD animal models, either to guide further testing of these models or to avoid unnecessary duplication in their future research.


2011 ◽  
Vol 11 (S2) ◽  
Author(s):  
Beáta Sperlágh ◽  
Zsuzsanna Hracskó ◽  
Mária Baranyi ◽  
Cecília Csölle ◽  
Flóra Gölöncsér ◽  
...  

2012 ◽  
Vol 2 (1) ◽  
Author(s):  
Francesca Managò ◽  
Stefano Espinoza ◽  
Ali Salahpour ◽  
Tatyana D. Sotnikova ◽  
Marc G. Caron ◽  
...  

2003 ◽  
Vol 4 (9) ◽  
pp. 727-738 ◽  
Author(s):  
Eleonora Maries ◽  
Biplob Dass ◽  
Timothy J. Collier ◽  
Jeffrey H. Kordower ◽  
Kathy Steece-Collier

Sign in / Sign up

Export Citation Format

Share Document