Electrochemical etching of α-cobalt hydroxide for improvement of oxygen evolution reaction

2016 ◽  
Vol 4 (24) ◽  
pp. 9578-9584 ◽  
Author(s):  
Peng Fei Liu ◽  
Shuang Yang ◽  
Li Rong Zheng ◽  
Bo Zhang ◽  
Hua Gui Yang

Electrochemically etched α-Co(OH)2–Cl, due to the dechlorination-induced defective structures and in situ formation of CoOOH fragments, are highly active for OER.

2019 ◽  
Author(s):  
Lichen Bai ◽  
Chia-Shuo Hsu ◽  
Duncan Alexander ◽  
Hao Ming Chen ◽  
Xile Hu

Single atom catalysts exhibit well-defined active sites and potentially maximum atomic efficiency. However, they are unsuitable for reactions that benefit from bimetallic promotion such as the oxygen evolution reaction (OER) in alkaline medium. Here we show that a single atom Co precatalyst can be in-situ transformed into a Co-Fe double atom catalyst for OER. This catalyst exhibits one of the highest turnover frequencies among metal oxides. Electrochemical, microscopic, and spectroscopic data including those from operando X-ray absorption spectroscopy, reveal a dimeric Co-Fe moiety as the active site of the catalyst. This work demonstrates double-atom catalysis as a promising approach for the developed of defined and highly active OER catalysts.


2019 ◽  
Author(s):  
Lichen Bai ◽  
Chia-Shuo Hsu ◽  
Duncan Alexander ◽  
Hao Ming Chen ◽  
Xile Hu

Single atom catalysts exhibit well-defined active sites and potentially maximum atomic efficiency. However, they are unsuitable for reactions that benefit from bimetallic promotion such as the oxygen evolution reaction (OER) in alkaline medium. Here we show that a single atom Co precatalyst can be in-situ transformed into a Co-Fe double atom catalyst for OER. This catalyst exhibits one of the highest turnover frequencies among metal oxides. Electrochemical, microscopic, and spectroscopic data including those from operando X-ray absorption spectroscopy, reveal a dimeric Co-Fe moiety as the active site of the catalyst. This work demonstrates double-atom catalysis as a promising approach for the developed of defined and highly active OER catalysts.


2019 ◽  
Vol 55 (53) ◽  
pp. 7687-7690 ◽  
Author(s):  
Can Huang ◽  
Ying Zou ◽  
Ya-Qian Ye ◽  
Ting Ouyang ◽  
Kang Xiao ◽  
...  

The highly active and stable oxygen evolution reaction (OER) performance of Ni–Fe phosphide/metaphosphate (Ni1−xFex-P/PO3) can originate from in situ generated Fe doped γ-NiOOH.


2016 ◽  
Vol 52 (32) ◽  
pp. 5546-5549 ◽  
Author(s):  
Xiang Liu ◽  
Shengsheng Cui ◽  
Manman Qian ◽  
Zijun Sun ◽  
Pingwu Du

A highly active copper oxide catalyst film is generated in situ from copper(ii) diamine complex for oxygen evolution reaction with high performance and excellent durability in alkaline solutions.


Author(s):  
Shuya Zhao ◽  
Yurui Xue ◽  
Zhongqiang Wang ◽  
Zhiqiang Zheng ◽  
Xiaoyu Luan ◽  
...  

Developing highly active, stable and low-cost electrocatalysts capable of an efficient oxygen evolution reaction (OER) is urgent and challenging.


Author(s):  
Zhikai Shi ◽  
Zebin Yu ◽  
Ronghua Jiang ◽  
Jun Huang ◽  
Yanping Hou ◽  
...  

The oxygen evolution reaction (OER) is an important half-reaction in the field of energy production. However, how effectively, simply, and greenly to prepare low-cost OER electrocatalysts remains a problem. Herein,...


Author(s):  
Yoo Sei Park ◽  
Jooyoung Lee ◽  
Myeong-Je Jang ◽  
Juchan Yang ◽  
Jae Hoon Jeong ◽  
...  

Seawater electrolysis is a promising technology for the production of hydrogen energy and seawater desalination. To produce hydrogen energy through seawater electrolysis, highly active electrocatalysts for the oxygen evolution reaction...


Sign in / Sign up

Export Citation Format

Share Document