controllable growth
Recently Published Documents


TOTAL DOCUMENTS

362
(FIVE YEARS 82)

H-INDEX

43
(FIVE YEARS 9)

2022 ◽  
Author(s):  
Guoliang Zhou ◽  
Hui Gao ◽  
Jin Li ◽  
Xiaoyue He ◽  
Yanbing He ◽  
...  

Abstract WTe2 nanostructures have intrigued much attention due to their unique properties, such as large non-saturating magnetoresistance, quantum spin Hall effect and topological surface state. However, the controllable growth of large-area atomically thin WTe2 nanostructures remains a significant challenge. In the present work, we demonstrate the controllable synthesis of 1T’ atomically thin WTe2 nanoflakes (NFs) by water-assisted ambient pressure chemical vapor deposition method based on precursor design and substrate engineering strategies. The introduction of water during the growth process can generate a new synthesized route by reacting with WO3 to form intermediate volatile metal oxyhydroxide. Using WO3 foil as the growth precursor can drastically enhance the uniformity of as-prepared large-area 1T’ WTe2 NFs compared to WO3 powders. Moreover, highly oriented WTe2 NFs with distinct orientations can be obtained by using a-plane and c-plane sapphire substrates, respectively. Corresponding precursor design and substrate engineering strategies are expected to be applicable to other low dimensional transition metal dichalcogenides, which are crucial for the design of novel electronic and optoelectronic devices.


2D Materials ◽  
2021 ◽  
Author(s):  
Kun Ye ◽  
Lixuan Liu ◽  
Liying Chen ◽  
Wenlong Li ◽  
Bochong Wang ◽  
...  

Abstract The layered transition metal dichalcogenides (TMDs) exhibit the intriguing physical properties and potential application in novel electronic devices. However, controllable growth of multilayer TMDs remains challenging. Herein, large-scale and high-quality multilayer prototype TMDs of W(Mo)Se2 were synthesized via chemical vapor deposition. For Raman and PL measurements, 2H and 3R multilayer WSe2 crystals displayed significant layer-dependent peak position and intensity feature. Besides, different from the oscillatory relationship of SHG intensity for odd-even layer numbers in 2H-stacked multilayer WSe2, the second harmonic generation intensity of 3R-stacked ones parabolically increased with the thickness due to the absence of inversion symmetry. For device application, photodetectors based on WSe2 with increasing thickness exhibited p-type (bilayer), ambipolar (trilayer), and n-type (4 layers) semiconductor behaviors, respectively. Furthermore, photodetectors based on the as-synthesized 3R-stacked WSe2 flakes displayed an excellent responsivity (R) of 7.8×103 mA/W, high specific detectivity (Da*) of 1.7×1014 Jones, outstanding external quantum efficiency (EQE) of 8.6×102 %, and fast response time (τRise=57 ms and τFall=53 ms) under 532 nm illumination with bias voltage of Vds=5 V. Similar results have also been achieved in multilayer MoSe2 crystals. All these findings indicate great potential of 3R-stacked TMDs in two-dimensional optoelectronic applications.


2021 ◽  
Vol 192 ◽  
pp. 109816
Author(s):  
Jierui Mu ◽  
Xiaohong Shi ◽  
Xu Han ◽  
Jie Li ◽  
Li Yang

2021 ◽  
pp. 151438
Author(s):  
Jiahao Yao ◽  
Haiyang Liu ◽  
Qingming He ◽  
Kai Chen ◽  
Yaping Wu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document