scholarly journals Prediction of many-electron wavefunctions using atomic potentials: extended basis sets and molecular dissociation

2019 ◽  
Vol 21 (38) ◽  
pp. 21541-21548 ◽  
Author(s):  
Jerry L. Whitten

A one-electron Schrödinger equation based on special one-electron potentials for atoms is shown to exist that produces orbitals for an arbitrary molecule that are sufficiently accurate to be used without modification to construct single- and multi-determinant wavefunctions.

2017 ◽  
Author(s):  
Sandor Kristyan

<p> The Brillouin theorem has been generalized for the extended non-relativistic electronic Hamiltonian (H<sub>Ñ</sub>+ H<sub>ne</sub>+ aH<sub>ee</sub>) in relation to coupling strength parameter (a), as well as for the configuration interactions (CI) formalism in this respect. For a computation support, we have made a particular modification of the SCF part in the Gaussian package: essentially a single line was changed in an SCF algorithm, wherein the operator r<sub>ij</sub><sup>-1</sup> was overwritten as r<sub>ij</sub><sup>-1</sup> ® ar<sub>ij</sub><sup>-1</sup>, and “a” was used as input. The case a=0 generates an orto-normalized set of Slater determinants which can be used as a basis set for CI calculations for the interesting physical case a=1, removing the known restriction by Brillouin theorem with this trick. The latter opens a door from the theoretically interesting subject of this work toward practice. </p>


2017 ◽  
Author(s):  
Sandor Kristyan

<p> The Brillouin theorem has been generalized for the extended non-relativistic electronic Hamiltonian (H<sub>Ñ</sub>+ H<sub>ne</sub>+ aH<sub>ee</sub>) in relation to coupling strength parameter (a), as well as for the configuration interactions (CI) formalism in this respect. For a computation support, we have made a particular modification of the SCF part in the Gaussian package: essentially a single line was changed in an SCF algorithm, wherein the operator r<sub>ij</sub><sup>-1</sup> was overwritten as r<sub>ij</sub><sup>-1</sup> ® ar<sub>ij</sub><sup>-1</sup>, and “a” was used as input. The case a=0 generates an orto-normalized set of Slater determinants which can be used as a basis set for CI calculations for the interesting physical case a=1, removing the known restriction by Brillouin theorem with this trick. The latter opens a door from the theoretically interesting subject of this work toward practice. </p>


2021 ◽  
Vol 2052 (1) ◽  
pp. 012004
Author(s):  
A N Belov ◽  
V V Turovtsev ◽  
Yu A Fedina ◽  
Yu D Orlov

Abstract The efficiency of the algorithm for the numerical solution of the Schrödinger torsion equation in the basis of Mathieu functions has been considered. The computational stability of the proposed algorithm is shown. The energies of torsion transitions determined in the basis sets of plane waves and Mathieu functions have been compared with the results of spectroscopy. A conclusion about the applicability of the algorithm using the basis set of Mathieu functions to the solution of the Schrödinger equation with a periodic potential has been derived.


Sign in / Sign up

Export Citation Format

Share Document