Customization of the molecular structure to modulate the crystal packing style of energetic materials

2019 ◽  
Vol 4 (5) ◽  
pp. 1032-1038
Author(s):  
Qi Huang ◽  
Zhicheng Guo ◽  
Longyu Liao ◽  
Shilong Hao ◽  
Fude Nie ◽  
...  

The crystal packing style and corresponding impact sensitivity of the dinitro-pyrazine ring have been modulated by customizing the molecular structure.

CrystEngComm ◽  
2018 ◽  
Vol 20 (6) ◽  
pp. 837-848 ◽  
Author(s):  
Beibei Tian ◽  
Ying Xiong ◽  
Lizhen Chen ◽  
Chaoyang Zhang

The crystal packing structure–safety (usually represented by sensitivity) relationships of energetic materials (EMs) are requisite to set a basis for tailoring new ones with the desired safety by means of crystal engineering, because safety is one of the two most important properties of EMs for which there is always a high concern.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chun-Hung Wang ◽  
Anthony C. Terracciano ◽  
Artёm E. Masunov ◽  
Mengyu Xu ◽  
Subith S. Vasu

AbstractFentanyl is a potent synthetic opioid pain reliever with a high bioavailability that can be used as prescription anesthetic. Rapid identification via non-contact methods of both known and emerging opioid substances in the fentanyl family help identify the substances and enable rapid medical attention. We apply PBEh-3c method to identify vibrational normal modes from 0.01 to 3 THz in solid fentanyl and its selected analogs. The molecular structure of each fentanyl analog and unique arrangement of H-bonds and dispersion interactions significantly change crystal packing and is subsequently reflected in the THz spectrum. Further, the study of THz spectra of a series of stereoisomers shows that small changes in molecular structure results in distinct crystal packing and significantly alters THz spectra as well. We discuss spectral features of synthetic opioids with higher potency than conventional fentanyl such as ohmefentanyl and sufentanil and discover the pattern of THz spectra of fentanyl analogs.


IUCrData ◽  
2017 ◽  
Vol 2 (6) ◽  
Author(s):  
C.Vidya Rani ◽  
L. Mitu ◽  
G. Chakkaravarthi ◽  
G. Rajagopal

In the title complex, [Co(C25H35N2O)2], the cobalt(II) atom has a distorted tetrahedral geometry provided by pairs of O and N atoms. The dihedral angles between the benzene rings of the same ligand are 52.39 (9) and 34.96 (9)°. The molecular structure is stabilized by weak intramolecular C—H...O hydrogen bonds. The crystal packing is stabilized mainly by van der Waals forces. The structure contains a solvent-accessible void of 276 Å3which was treated using the SQUEEZE routine fromPLATON[Spek (2015).Acta Cryst.C71, 9–18]. The methyl C atoms of thetert-butyl groups are rotationally disordered, with site occupancies of 0.802 (3) and 0.548 (9) for the major components and 0.198 (3) and 0.452 (9) for the minor components.


2012 ◽  
Vol 68 (4) ◽  
pp. o1124-o1124 ◽  
Author(s):  
J. Suresh ◽  
R. Vishnupriya ◽  
P. Gunasekaran ◽  
S. Perumal ◽  
P. L. Nilantha Lakshman

The furan ring in the title compound, C27H20N2O2, adopts a twisted conformation about thesp3—sp3bond. The molecular structure is stabilized by an intramolecular C—H...O interaction which generates anS(6) ring motif. The crystal packing is stabilized by N—H...O and C—H...O interactions generating centrosymmetricR22(18) andC(6) chain motifs, respectively. A weak C—H...π interaction is also observed.


2007 ◽  
Vol 63 (11) ◽  
pp. o4248-o4248 ◽  
Author(s):  
R. Suresh ◽  
Charles C. Kanagam ◽  
P. R. Umarani ◽  
V. Manivannan ◽  
Orhan Büyükgüngör

In the title compound, C20H18O3, the phenyl ring makes a dihedral angle of 39.97 (4)° with the benzene ring of the chromanone unit. The molecular structure and the crystal packing are stabilized by weak intra- and intermolecular C—H...O interactions.


2014 ◽  
Vol 70 (4) ◽  
pp. o424-o425 ◽  
Author(s):  
P. Narayanan ◽  
K. Sethusankar ◽  
Velu Saravanan ◽  
Arasambattu K. Mohanakrishnan

In the title compound, C28H22N2O8S, the carbazole ring system is roughly planar, with a maximum deviation of 0.084 (3) Å for the C atom connected to the 4,5-dimethoxy-2-nitrophenyl ring. The dihedral angle between the carbazole system and the dimethoxy-substituted nitrophenyl ring is 57.05 (10)°. The aldehyde C atom deviates by 0.164 (5) Å from its attached carbazole ring system. The molecular structure is stabilized by C—H...O interactions which generate twoS(6) and oneS(7) ring motif. In the crystal, molecules are linked by C—H...O hydrogen bonds, formingR33(15) ring motifs, which are further crosslinked byR32(19) ring motifs, resulting in (002) layers. The crystal packing also features C—H...π interactions.


2018 ◽  
Vol 96 (10) ◽  
pp. 949-956 ◽  
Author(s):  
Si-Yu Xu ◽  
Zhou-Yu Meng ◽  
Feng-Qi Zhao ◽  
Xue-Hai Ju

A series of guanidine cations and azole anions were designed for use as energetic salts. Their geometrical structures were optimized by the density functional theory (DFT) method. The counter ions were matched by the similar magnitude of the electron affinity (EA) of the cation and the ionization potential (IP) of the anion. The densities, heats of formation, detonation parameters, and impact sensitivity were predicted. The incorporation of guanidine cations and diazole anions are favorable to form thermal stable salts except cation A1. The diaminoguanidine cation has greater impact on the density and detonation properties of the salts than the triaminoguanidine cation. 2-Amino-3-nitroamino-4,5-nitro-dinitropyrazole is the best anion for advancing the detonation performance among all the anions. Incorporating the C=O bond into the guanidine cations enhances the density and detonation performance of the guanidine-azole salts. The salts containing III1–III4 anion have better detonation properties than HMX, indicating that these salts are potential energetic compounds. Compared with RDX or HMX, some salts with diaminoguanidine cation display lower impact sensitivity.


CrystEngComm ◽  
2019 ◽  
Vol 21 (32) ◽  
pp. 4701-4706 ◽  
Author(s):  
Jie Tang ◽  
Guangbin Cheng ◽  
Ying Zhao ◽  
Pengju Yang ◽  
Xuehai Ju ◽  
...  

Crystal engineering has prompted the development of energetic materials in recent years.


Sign in / Sign up

Export Citation Format

Share Document