Density functional study of guanidine-azole salts as energetic materials

2018 ◽  
Vol 96 (10) ◽  
pp. 949-956 ◽  
Author(s):  
Si-Yu Xu ◽  
Zhou-Yu Meng ◽  
Feng-Qi Zhao ◽  
Xue-Hai Ju

A series of guanidine cations and azole anions were designed for use as energetic salts. Their geometrical structures were optimized by the density functional theory (DFT) method. The counter ions were matched by the similar magnitude of the electron affinity (EA) of the cation and the ionization potential (IP) of the anion. The densities, heats of formation, detonation parameters, and impact sensitivity were predicted. The incorporation of guanidine cations and diazole anions are favorable to form thermal stable salts except cation A1. The diaminoguanidine cation has greater impact on the density and detonation properties of the salts than the triaminoguanidine cation. 2-Amino-3-nitroamino-4,5-nitro-dinitropyrazole is the best anion for advancing the detonation performance among all the anions. Incorporating the C=O bond into the guanidine cations enhances the density and detonation performance of the guanidine-azole salts. The salts containing III1–III4 anion have better detonation properties than HMX, indicating that these salts are potential energetic compounds. Compared with RDX or HMX, some salts with diaminoguanidine cation display lower impact sensitivity.

RSC Advances ◽  
2015 ◽  
Vol 5 (48) ◽  
pp. 38048-38055 ◽  
Author(s):  
Yan-Yan Guo ◽  
Wei-Jie Chi ◽  
Ze-Sheng Li ◽  
Quan-Song Li

Cycloalkane derivatives Cm(N–NO2)mexhibit notable detonation properties and remarkable stability for potential energetic materials.


Molecules ◽  
2019 ◽  
Vol 24 (18) ◽  
pp. 3213 ◽  
Author(s):  
Binghui Duan ◽  
Ning Liu ◽  
Bozhou Wang ◽  
Xianming Lu ◽  
Hongchang Mo

4,8-Dihydrodifurazano[3,4-b,e]pyrazine (DFP) is one kind of parent compound for the synthesis of various promising difurazanopyrazine derivatives. In this paper, eleven series of energetic salts composed of 4,8-dihydrodifurazano[3,4-b,e]pyrazine-based anions and ammonium-based cations were designed. Their densities, heats of formation, energetic properties, impact sensitivity, and thermodynamics of formation were studied and compared based on density functional theory and volume-based thermodynamics method. Results show that ammonium and hydroxylammonium salts exhibit higher densities and more excellent detonation performance than guanidinium and triaminoguanidinium salts. Therein, the substitution with electron-withdrawing groups (–NO2, –CH2NF2, –CH2ONO2, –C(NO2)3, –CH2N3) contributes to enhancing the densities, heats of formation, and detonation properties of the title salts, and the substitution of –C(NO2)3 features the best performance. Incorporating N–O oxidation bond to difurazano[3,4-b,e]pyrazine anion gives a rise to the detonation performance of the title salts, while increasing their impact sensitivity meanwhile. Importantly, triaminoguanidinium 4,8-dihydrodifurazano[3,4-b,e]pyrazine (J4) has been successfully synthesized. The experimentally determined density and H50 value of J4 are 1.602 g/cm3 and higher than 112 cm, which are consistent with theoretical values, supporting the reliability of calculation methods. J4 proves to be a thermally stable and energetic explosive with decomposition peak temperature of 216.7 °C, detonation velocity 7732 m/s, and detonation pressure 25.42 GPa, respectively. These results confirm that the derivative work in furazanopyrazine compounds is an effective strategy to design and screen out potential candidates for high-performance energetic salts.


RSC Advances ◽  
2015 ◽  
Vol 5 (28) ◽  
pp. 21823-21830 ◽  
Author(s):  
Xueli Zhang ◽  
Junqing Yang ◽  
Ming Lu ◽  
Xuedong Gong

The potential energetic materials, alkaline earth metal complexes of the pentazole anion (M(N5)2, M = Mg2+, Ca2+, Sr2+and Ba2+), were studied using the density functional theory.


RSC Advances ◽  
2016 ◽  
Vol 6 (38) ◽  
pp. 31968-31975 ◽  
Author(s):  
Shuai Zhao ◽  
Liguo Gao ◽  
Chunfeng Lan ◽  
Shyam S. Pandey ◽  
Shuzi Hayase ◽  
...  

In this work, we present a detailed first-principles investigation on the stoichiometric and oxygen-deficient structures of double perovskites, Sr2BMoO6 (B = Mg, Co and Ni), using the density functional theory (DFT) method.


2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
Laura Cecilia Bichara ◽  
Hernán Enrique Lanús ◽  
Evelina Gloria Ferrer ◽  
Mónica Beatriz Gramajo ◽  
Silvia Antonia Brandán

We have carried out a structural and vibrational theoretical study for the citric acid dimer. The Density Functional Theory (DFT) method with the B3LYP/6-31G∗ and B3LYP/6-311++ methods have been used to study its structure and vibrational properties. Then, in order to get a good assignment of the IR and Raman spectra in solid phase of dimer, the best fit possible between the calculated and recorded frequencies was carry out and the force fields were scaled using the Scaled Quantum Mechanic Force Field (SQMFF) methodology. An assignment of the observed spectral features is proposed. A band of medium intensity at 1242  together with a group of weak bands, previously not assigned to the monomer, was in this case assigned to the dimer. Furthermore, the analysis of the Natural Bond Orbitals (NBOs) and the topological properties of electronic charge density by employing Bader's Atoms in Molecules theory (AIM) for the dimer were carried out to study the charge transference interactions of the compound.


2020 ◽  
Author(s):  
Saeedeh Mohammadi ◽  
Mohammad Esmailpour ◽  
Mina Mohammadi

Abstract This paper is a new step in helping the treatment of coronavirus by improving the performance of chloroquine drug. For this purpose, we propose a complex of chloroquine drug with graphene nanoribbon (GNR) scheme. We compute the structural and electrical properties and absorption of chloroquine (C18H26ClN3) and GNR complex using the density functional theory (DFT) method. By creating a drug and GNR complex, the density of states of electrons increases and the energy gap decreases compared to the chloroquine. Also, using absorption calculations and spectrums such as infrared and UV-Vis spectra, we showed that GNR is a suitable structure for creating chloroquine drug complex. Our results show that the dipole moment, global softness and electrophilicity for the drug complex increases compared to the non-complex state. Our calculations can be useful for increasing performance and reducing the side effects of chloroquine, and thus can be effective in treating coronavirus.


2013 ◽  
Vol 652-654 ◽  
pp. 815-818
Author(s):  
Yan Wei ◽  
Jia Xin Xu ◽  
Xiao Mei Yuan ◽  
Xiao Hui Zheng

We have studied the structures and electronic properties of PdCn (n=2-12) using the density functional theory in this paper. Though calculating, we found that the linear isomers are most stable for PdCn(n=2-9) clusters. N=10 is turning point, and the bicyclical structure is most stable for PdC10 cluster. Cyclic structures have the lowest energy for PdC11 and PdC12 clusters.


Molecules ◽  
2020 ◽  
Vol 25 (8) ◽  
pp. 1783
Author(s):  
Hao-Ran Wang ◽  
Chong Zhang ◽  
Bing-Cheng Hu ◽  
Xue-Hai Ju

Energetic salts based on pentazolate anion (cyclo-N5−) have attracted much attention due to their high nitrogen contents. However, it is an enormous challenge to efficiently screen out an appropriate cation that can match well with cyclo-N5−. The vertical electron affinity (VEA) of the cations and vertical ionization potential (VIP) of the anions for 135 energetic salts and some cyclo-N5− salts were calculated by the density functional theory (DFT). The magnitudes of VEA and VIP, and their matchability were analyzed. The results based on the calculations at the B3LYP/6-311++G(d,p) and B3LYP/aug-cc-pVTZ levels indicate that there is an excellent compatibility between cyclo-N5− and cation when the difference between the VEA of cation and the VIP of cyclo-N5− anion is −2.8 to −1.0 eV. The densities of the salts were predicted by the DFT method. Relationship between the calculated density and the experimental density was established as ρExpt = 1.111ρcal − 0.06067 with a correlation coefficient of 0.905. This regression equation could be in turn used to calibrate the calculated density of the cyclo-N5− energetic salts accurately. This work provides a favorable way to explore the energetic salts with excellent performance based on cyclo-N5−.


Catalysts ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 359 ◽  
Author(s):  
Hanwei Li ◽  
Mingliang Luo ◽  
Guohong Tao ◽  
Song Qin

Computational investigations on the bisphospholanoethane (BPE)-ligated Cu-catalyzed enantioselective addition of enynes to ketones were performed with the density functional theory (DFT) method. Two BPE-mesitylcopper (CuMes) catalysts, BPE-CuMes and (S,S)-Ph-BPE–CuMes, were employed to probe the reaction mechanism with the emphasis on stereoselectivity. The calculations on the BPE-CuMes system indicate that the active metallized enyne intermediate acts as the catalyst for the catalytic cycle. The catalytic cycle involves two steps: (1) ketone addition to the alkene moiety of the metallized enyne; and (2) metallization of the enyne followed by the release of product with the recovery of the active metallized enyne intermediate. The first step accounts for the distribution of the products, and therefore is the stereo-controlling step in chiral systems. In the chiral (S,S)-Ph-BPE–CuMes system, the steric hindrance is vital for the distribution of products and responsible for the stereoselectivity of this reaction. The steric hindrance between the phenyl ring of the two substrates and groups at the chiral centers in the ligand skeleton is identified as the original of the stereoselectivity for the titled reaction.


Sign in / Sign up

Export Citation Format

Share Document