Molecular aggregation method for perovskite–fullerene bulk heterostructure solar cells

2020 ◽  
Vol 8 (3) ◽  
pp. 1326-1334 ◽  
Author(s):  
Su Ryong Ha ◽  
Woo Hyeon Jeong ◽  
Yanliang Liu ◽  
Jae Teak Oh ◽  
Sung Yong Bae ◽  
...  

We report morphological control with phenyl-C60-butyric acid methyl ester (PCBM) molecular aggregation for perovskite–PCBM bulk heterostructure (Pe–PCBM BHS) solar cells.

2015 ◽  
Vol 3 (24) ◽  
pp. 6209-6217 ◽  
Author(s):  
Ganesh D. Sharma ◽  
S. A. Siddiqui ◽  
Agapi Nikiforou ◽  
Galateia E. Zervaki ◽  
Irene Georgakaki ◽  
...  

A mono(carboxy)porphyrin-triazine-(bodipy)2triad(PorCOOH)(BDP)2has been used as a donor with ([6,6]-phenyl C71butyric acid methyl ester) (PC71BM) as an acceptor, in BHJ - solution processed organic solar cells.


2013 ◽  
Vol 538 ◽  
pp. 3-6
Author(s):  
Yuichiro Yanagi ◽  
Takanori Okukawa ◽  
Akira Yoshida ◽  
Masaya Ohzeki ◽  
Tatsuki Yanagidate ◽  
...  

Bulk-heterojunction solar cells were fabricated based on poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) on an indium tin oxide (ITO) coated flexible polyethylene terephthalate (PET) substrate. Performance improvements of the flexible solar cells by optimizing post thermal annealing conditions are reported. The solar cells annealed at 150 oC showed the minimal deformation of the PET substrate, and the resulted conversion efficiency was 1.35% under the light irradiation conditions of the Superscript textAM1.5 simulated solar intensity of 100 mW/cm2.


Sign in / Sign up

Export Citation Format

Share Document