Recent advances in sulfonylation reactions using potassium/sodium metabisulfite

2020 ◽  
Vol 56 (30) ◽  
pp. 4145-4155 ◽  
Author(s):  
Shengqing Ye ◽  
Min Yang ◽  
Jie Wu

Recently, sulfonylation reactions using potassium/sodium metabisulfite as the sulfur dioxide surrogate have been developed rapidly. In most cases, the transformations go through radical processes with the insertion of sulfur dioxide under mild conditions. Additionally, transition metal catalysis is applied in the reactions for the synthesis of sulfonyl-containing compounds.

2015 ◽  
Vol 13 (6) ◽  
pp. 1592-1599 ◽  
Author(s):  
Gang Liu ◽  
Congbin Fan ◽  
Jie Wu

Recent advances in the insertion of sulfur dioxide under transition metal catalysis or metal-free conditions via a radical process are presented.


2018 ◽  
Vol 54 (89) ◽  
pp. 12561-12569 ◽  
Author(s):  
Guanyinsheng Qiu ◽  
Kaida Zhou ◽  
Jie Wu

Recent advances in the sulfonylation of C–H bonds with the insertion of sulfur dioxide are summarized. C–H bond sulfonylation under transition metal catalysis or through a radical process has been developed. In some cases, the sulfonylation can be performed under catalyst- and additive-free conditions, or can be facilitated by visible light irradiation. The efficiency is also studied by merging the radical process and metal catalysis.


Catalysts ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 355 ◽  
Author(s):  
Yi Wang ◽  
Anan Liu ◽  
Dongge Ma ◽  
Shuhong Li ◽  
Chichong Lu ◽  
...  

Fulfilling the direct inert C–H bond functionalization of raw materials that are earth-abundant and commercially available for the synthesis of diverse targeted organic compounds is very desirable and its implementation would mean a great reduction of the synthetic steps required for substrate prefunctionalization such as halogenation, borylation, and metalation. Successful C–H bond functionalization mainly resorts to homogeneous transition-metal catalysis, albeit sometimes suffering from poor catalyst reusability, nontrivial separation, and severe biotoxicity. TiO2 photocatalysis displays multifaceted advantages, such as strong oxidizing ability, high chemical stability and photostability, excellent reusability, and low biotoxicity. The chemical reactions started and delivered by TiO2 photocatalysts are well known to be widely used in photocatalytic water-splitting, organic pollutant degradation, and dye-sensitized solar cells. Recently, TiO2 photocatalysis has been demonstrated to possess the unanticipated ability to trigger the transformation of inert C–H bonds for C–C, C–N, C–O, and C–X bond formation under ultraviolet light, sunlight, and even visible-light irradiation at room temperature. A few important organic products, traditionally synthesized in harsh reaction conditions and with specially functionalized group substrates, are continuously reported to be realized by TiO2 photocatalysis with simple starting materials under very mild conditions. This prominent advantage—the capability of utilizing cheap and readily available compounds for highly selective synthesis without prefunctionalized reactants such as organic halides, boronates, silanes, etc.—is attributed to the overwhelmingly powerful photo-induced hole reactivity of TiO2 photocatalysis, which does not require an elevated reaction temperature as in conventional transition-metal catalysis. Such a reaction mechanism, under typically mild conditions, is apparently different from traditional transition-metal catalysis and beyond our insights into the driving forces that transform the C–H bond for C–C bond coupling reactions. This review gives a summary of the recent progress of TiO2 photocatalytic C–H bond activation for C–C coupling reactions and discusses some model examples, especially under visible-light irradiation.


Molecules ◽  
2020 ◽  
Vol 25 (21) ◽  
pp. 4970
Author(s):  
Su Chen ◽  
Prabhat Ranjan ◽  
Leonid G. Voskressensky ◽  
Erik V. Van der Eycken ◽  
Upendra K. Sharma

The transition metal-catalyzed C–H bond functionalization of azoles has emerged as one of the most important strategies to decorate these biologically important scaffolds. Despite significant progress in the C–H functionalization of various heteroarenes, the regioselective alkylation and alkenylation of azoles are still arduous transformations in many cases. This review covers recent advances in the direct C–H alkenylation, alkylation and alkynylation of azoles utilizing transition metal-catalysis. Moreover, the limitations of different strategies, chemoselectivity and regioselectivity issues will be discussed in this review.


2021 ◽  
Author(s):  
Wen-Jing Xiao ◽  
Fu-Dong Lu ◽  
Gui-Feng He ◽  
Liang-Qiu Lu

The combination of photoredox and transition metal catalysis, which is termed metallaphotoredox catalysis, is a powerful platform for building complex molecules under mild conditions. In particular, metallaphotoredox-catalyzed multicomponent coupling reactions,...


2001 ◽  
Vol 73 (8) ◽  
pp. 1315-1318 ◽  
Author(s):  
Taisheng Huang ◽  
Sripathy Venkatraman ◽  
Yue Meng ◽  
Tien V. Nguyen ◽  
Daniel Kort ◽  
...  

Transition-metal catalysis is out-grown from dry-boxes where the use of inert gas atmosphere and the exclusion of moisture have been essential. Such a restriction undoubtedly imposes limitations in the application of these reactions in organic synthesis and in the recycling of the catalysts. This article discusses some recent advances of rhodium-catalyzed carbon­carbon bond formations under the natural conditions of air and water.


2020 ◽  
Vol 18 (44) ◽  
pp. 8994-9017
Author(s):  
Partha Pratim Sen ◽  
Neha Dagar ◽  
Swati Singh ◽  
Vishal Jyoti Roy ◽  
Vishali Pathania ◽  
...  

Metallo-electro catalysis has emerged as sustainable alternate to conventional transition metal methodologies. This review highlights the recent advances for the formation of C–N bonds by merging transition metal catalysis with electrosynthesis.


ACS Catalysis ◽  
2015 ◽  
Vol 5 (8) ◽  
pp. 4734-4742 ◽  
Author(s):  
Masakazu Nambo ◽  
Cathleen M. Crudden

Sign in / Sign up

Export Citation Format

Share Document