Oxidative Coupling of Methane over Mo-Sn Catalyst

2021 ◽  
Author(s):  
Lina Yan ◽  
Junfeng Zhang ◽  
Xiujuan Gao ◽  
Faen Song ◽  
Xiaoxing Wang ◽  
...  

A novel Mo-Sn catalyst for oxidative coupling of methane was designed by a hydrothermal method. At 650 °C, the conversion of methane was 8.6% and the selectivity of C2 hydrocarbons...

2013 ◽  
Vol 15 (1) ◽  
pp. 22-26 ◽  
Author(s):  
Barbara Litawa ◽  
Piotr Michorczyk ◽  
Jan Ogonowski

In this work the La2O3/CeO2 (33 mol % of La) and CaO/CeO2 (33 mol % of Ca) catalysts were prepared by the impregnation method and characterized by XRD and CO2-TPD. The catalytic properties of the catalysts were tested in the OCM process at 1073 K using the methane/oxygen mixture of the mole ratio 3.7 or 2.5 additionally containing CO2 and helium balance. It was found that in the presence of both catalysts an addition of CO2 enhances the selectivity to the ethylene and ethane and it does not have any negative influence on methane conversion. In the case of the CaO/CeO2 catalyst the promoting effect of CO2 was the highest. When the partial pressure of CO2 equals to 39 kPa the increase in selectivity from 36 to 41% was noted while the conversion of methane equal to 19.4-19.7 %.


1995 ◽  
Vol 63 (2) ◽  
pp. 190-194 ◽  
Author(s):  
Kaushal K. Tiwari ◽  
Tarak N. Roy ◽  
Somnath Banerjee ◽  
Subrato Ganguly ◽  
Deba P. Bhattacharyya

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Kannan P. Ramaiyan ◽  
Luke H. Denoyer ◽  
Angelica Benavidez ◽  
Fernando H. Garzon

AbstractEfficient conversion of methane to value-added products such as olefins and aromatics has been in pursuit for the past few decades. The demand has increased further due to the recent discoveries of shale gas reserves. Oxidative and non-oxidative coupling of methane (OCM and NOCM) have been actively researched, although catalysts with commercially viable conversion rates are not yet available. Recently, $${{{{{{{\mathrm{Sr}}}}}}}}_2Fe_{1.5 + 0.075}Mo_{0.5}O_{6 - \delta }$$ Sr 2 F e 1.5 + 0.075 M o 0.5 O 6 − δ (SFMO-075Fe) has been reported to activate methane in an electrochemical OCM (EC-OCM) set up with a C2 selectivity of 82.2%1. However, alkaline earth metal-based materials are known to suffer chemical instability in carbon-rich environments. Hence, here we evaluated the chemical stability of SFMO in carbon-rich conditions with varying oxygen concentrations at temperatures relevant for EC-OCM. SFMO-075Fe showed good methane activation properties especially at low overpotentials but suffered poor chemical stability as observed via thermogravimetric, powder XRD, and XPS measurements where SrCO3 was observed to be a major decomposition product along with SrMoO3 and MoC. Nevertheless, our study demonstrates that electrochemical methods could be used to selectively activate methane towards partial oxidation products such as ethylene at low overpotentials while higher applied biases result in the complete oxidation of methane to carbon dioxide and water.


2021 ◽  
Vol 5 (1) ◽  
pp. 14
Author(s):  
Suna An ◽  
JeongHyun Cho ◽  
Dahye Kwon ◽  
Ji Chul Jung

In this study, we aimed to enhance the catalytic activity of perovskite catalysts and elucidate their catalytic behavior in the oxidative coupling of methane (OCM), using alkali-added LaAlO3 perovskite catalysts. We prepared LaAlO3_XY (X = Li, Na, K, Y = mol %) catalysts and applied them to the OCM reaction. The results showed that the alkali-added catalysts’ activities were promoted compared to the LaAlO3 catalyst. In this reaction, ethane was first synthesized through the dimerization of methyl radicals, which were produced from the reaction of methane and oxygen vacancy in the perovskite catalysts. The high ethylene selectivity of the alkali-added catalysts originated from their abundance of electrophilic lattice oxygen species, facilitating the selective formation of C2 hydrocarbons from ethane. The high COx (carbon monoxide and carbon dioxide) selectivity of the LaAlO3 catalyst originated from its abundance of nucleophilic lattice oxygen species, favoring the selective production of COx from ethane. We concluded that electrophilic lattice oxygen species play a significant role in producing ethylene. We obtained that alkali-adding could be an effective method for improving the catalytic activity of perovskite catalysts in the OCM reaction.


1992 ◽  
Vol 13 (2-3) ◽  
pp. 391-400 ◽  
Author(s):  
D. Papageorgiou ◽  
D. Vamvouka ◽  
D. Boudouvas ◽  
X.E. Verykios

Sign in / Sign up

Export Citation Format

Share Document