conversion rates
Recently Published Documents





2023 ◽  
Vol 83 ◽  
R. L. Cansian ◽  
A. Staudt ◽  
J. L. Bernardi ◽  
B. M. S. Puton ◽  
D. Oliveira ◽  

Abstract The essential oil of citronella (Cymbopogon winterianus) has several biological activities, among them the insect repellent action. Some studies showed that cinnamic acid esters can be applied as natural pesticides, insecticides and fungicides. In this context, the objective of the present work was to evaluate the production of esters from citronella essential oil with cinnamic acid via enzymatic esterification. Besides, the essential oil toxicity before and after esterification against Artemia salina and larvicidal action on Aedes aegypti was investigated. Esters were produced using cinnamic acid as the acylating agent and citronella essential oil (3:1) in heptane and 15 wt% NS 88011 enzyme as biocatalysts, at 70 °C and 150 rpm. Conversion rates of citronellyl and geranyl cinnamates were 58.7 and 69.0% for NS 88011, respectively. For the toxicity to Artemia salina LC50 results of 5.29 μg mL-1 were obtained for the essential oil and 4.36 μg mL-1 for the esterified oils obtained with NS 88011. In the insecticidal activity against Aedes aegypti larvae, was obtained LC50 of 111.84 μg mL-1 for the essential oil of citronella and 86.30 μg mL-1 for the esterified oils obtained with the enzyme NS 88011, indicating high toxicity of the esters. The results demonstrated that the evaluated samples present potential of application as bioinsecticide.

2022 ◽  
Vol 23 (1) ◽  
Maia H. Malonzo ◽  
Viivi Halla-aho ◽  
Mikko Konki ◽  
Riikka J. Lund ◽  
Harri Lähdesmäki

Abstract Background DNA methylation is commonly measured using bisulfite sequencing (BS-seq). The quality of a BS-seq library is measured by its bisulfite conversion efficiency. Libraries with low conversion rates are typically excluded from analysis resulting in reduced coverage and increased costs. Results We have developed a probabilistic method and software, LuxRep, that implements a general linear model and simultaneously accounts for technical replicates (libraries from the same biological sample) from different bisulfite-converted DNA libraries. Using simulations and actual DNA methylation data, we show that including technical replicates with low bisulfite conversion rates generates more accurate estimates of methylation levels and differentially methylated sites. Moreover, using variational inference speeds up computation time necessary for whole genome analysis. Conclusions In this work we show that taking into account technical replicates (i.e. libraries) of BS-seq data of varying bisulfite conversion rates, with their corresponding experimental parameters, improves methylation level estimation and differential methylation detection.

2022 ◽  
Vol 278 ◽  
pp. 119491
Jiří Ryšavý ◽  
Jiří Horák ◽  
František Hopan ◽  
Lenka Kuboňová ◽  
Kamil Krpec ◽  
Flue Gas ◽  

2022 ◽  
pp. 44-60
Edna Mngusughun Denga ◽  
Narasimha Rao Vajjhala ◽  
Sandip Rakshit

Digital marketing is a growing trend day by day, with internet marketing concepts becoming a powerful medium for digital marketing and electronic devices such as cell phones, digital billboards, tablets and laptops, portable game devices, and many gadgets that help in digital marketing. In this chapter, the role of digital marketing in assisting companies to achieve a sustainable competitive advantage was analyzed. The outbreak of the COVID-19 pandemic has put an end to companies' sales and business growth predictions, and digital marketing is no exception. Digital marketing will be at the forefront as many marketers might be looking for creative ways to sell online, reduce lead costs, increase click-through rates and conversion rates, and seek out what's new in digital marketing. This chapter focuses on understanding digital marketing concepts and how firms can achieve a competitive edge using various examples. This chapter reviews the different digital marketing concepts and strategies adopted by major global companies.

2021 ◽  
Vol 12 ◽  
Xiaoting Feng ◽  
Yini Yao ◽  
Nuo Xu ◽  
Hexue Jia ◽  
Xuezhi Li ◽  

Effective pretreatment is vital to improve the biomass conversion efficiency, which often requires the addition of xylanase as an accessory enzyme to enhance enzymatic saccharification of corn stover. In this study, we investigated the effect of two sophisticated pretreatment methods including ammonium sulfite (AS) and steam explosion (SE) on the xylanase profits involved in enzymatic hydrolysis of corn stover. We further explored the interactions between lignin and xylanase Xyn10A protein. Our results showed that the conversion rates of glucan and xylan in corn stover by AS pretreatment were higher by Xyn10A supplementation than that by SE pretreatment. Compared with the lignin from SE pretreated corn stover, the lignin from AS pretreated corn stover had a lower Xyn10A initial adsorption velocity (13.56 vs. 10.89 mg g−1 min−1) and adsorption capacity (49.46 vs. 27.42 mg g−1 of lignin) and weakened binding strength (310.6 vs. 215.9 L g−1). Our study demonstrated the low absolute zeta potential and strong hydrophilicity of the lignin may partly account for relative weak interaction between xylanase protein and lignin from AS pretreated corn stover. In conclusion, our results suggested that AS pretreatment weakened the inhibition of lignin to enzyme, promoted the enzymatic hydrolysis of corn stover, and decreased the cost of enzyme in bioconversion.

2021 ◽  
Vol 14 (1) ◽  
pp. 105
Klaus Josef Hennenberg ◽  
Swantje Gebhardt ◽  
Florian Wimmer ◽  
Martin Distelkamp ◽  
Christian Lutz ◽  

Footprints are powerful indicators for evaluating the impacts of a country’s bioeconomy on environmental goods, both domestic and abroad. We apply a hybrid approach combining a multi-regional input-output model and land use modelling to compute the agricultural land footprint (aLF). Furthermore, we added information on land-use change to the analysis and allocated land conversion to specific commodities. Using Germany as a case study, we show that the aLF abroad is 2.5 to 3 times larger compared to impacts within the country. When allocating land conversion of natural and semi-natural land-cover types in 2005 and 2010 to import increases by Germany, conversion rates were found to be 2.5 times higher than for the global average. Import increases to Germany slowed down in 2015 and 2020, reducing land conversion attributed to the German bioeconomy as well. Our results indicate that looking at a static import pattern is not sufficient to draw a realistic picture of the land footprint of a country. For a more detailed assessment that also considers temporal dynamics and impacts of biomass use and trade, our newly developed set of indicators also captures changes of import patterns over time. The case study shows that our enhanced land footprint provides clear and meaningful information for policymakers and other stakeholders.

Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 19
Vitor Vlnieska ◽  
Aline S. Muniz ◽  
Angelo R. S. Oliveira ◽  
Maria A. F. César-Oliveira ◽  
Danays Kunka

With the increase in global demand for biodiesel, first generation feedstock has drawn the attention of governmental institutions due to the correlation with large land farming areas. The second and third feedstock generations are greener feedstock sources, nevertheless, they require different catalytic conditions if compared with first generation feedstock. In this work, we present the synthesis and characterization of oligoesters matrices and their functionalization to act as a pseudo-homogeneous acid catalyst for biodiesel production, named Oligocat. The main advantage of Oligocat is given due to its reactional medium interaction. Initially, oligocat is a solid catalyst soluble in the alcoholic phase, acting as a homogeneous catalyst, providing better mass transfer of the catalytic groups to the reaction medium, and as the course of the reaction happens, Oligocat migrates to the glycerol phase, also providing the advantage of easy separation of the biodiesel. Oligocat was synthesized through polymerization of aromatic hydroxy acids, followed by a chemical functionalization applying the sulfonation technique. Characterization of the catalysts was carried out by infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (NMR), gel permeation chromatography (GPC), and thermogravimetric analysis (TGA). The synthesized oligomers presented 5357 g·mol−1 (Mw) and 3909 g·mol−1 (Mn), with a moderate thermal resistance of approximately 175 °C. By sulfonation reaction, it was possible to obtain a high content of sulphonic groups of nearly 70 mol%, which provided the catalytic activity to the oligomeric matrix. With the mentioned physical–chemical properties, Oligocat is chemically designed to convert second generation feedstock to biodiesel efficiently. Preliminary investigation using Oligocat for biodiesel production resulted in conversion rates higher than 96.5 wt.%.

2021 ◽  
Vol 12 ◽  
Emna Yahyaoui ◽  
Daniela Torello Marinoni ◽  
Roberto Botta ◽  
Paola Ruffa ◽  
Maria Antonietta Germanà

Eight Sicilian cultivars of hazelnut (Corylus avellana L.), namely-Curcia, Nociara Collica, Panottara Collica, Panottara Galati Grande, Parrinara, Panottara Baratta Piccola, Enzo, and Rossa Galvagno, registered into the Italian Cultivar Register of fruit tree species in 2017 were selected from Nebrodi area and established in vitro. The aim of the work was to carry out the sanitation of the cultivars and get virus-free plants from the most important viral pathogen threat, the apple mosaic virus. Virus-free plant material is essential for the production of certified plants from Sicilian hazelnut cultivars, complying the CE (cat. CAC) quality and the technical standards established in 2017 for voluntary certification by the Italian Ministry of Agricultural, Food and Forestry Policies (MIPAAF). In this study, we investigated the possibility of establishing in vitro true-to-type and virus-free hazelnut plantlets via the encapsulation technology of apexes. The in vitro shoot proliferation rates were assessed for the different cultivars, sampling periods, temperature treatments, and type of explant used for culture initiation. Viability, regrowth, and conversion rates of both conventional meristem tip culture (MTC) and not conventional (MTC combined with the encapsulation technology) sanitation techniques were evaluated.

Mechanika ◽  
2021 ◽  
Vol 27 (6) ◽  
pp. 492-497
Dariusz SZPICA ◽  

Further restrictions on the use of compression-ignition engines in transportation are prompting the search for adaptations to run on other fuels. One of the most popular alternative fuels is Compressed Natural Gas (CNG), which due to its low carbon content can be competitive with classical fuels. This paper presents the results of testing a Cummins 6BT compression ignition engine that has undergone numerous modifications to convert to CNG power. The sequential gas injection system and the ignition system were installed in this engine. The compression ratio was also lowered from 16.5 to 11.5 by replacing the pistons. Tests conducted on an engine dynamometer were to show the differences in emission and conversion in the catalyst of hydrocarbons contained in the exhaust gases. Two structurally different catalysts operating at different exhaust temperatures (400 and 500)±2.5°C were used. The catalyst operating at 500±2.5°C showed a 23.5% higher conversion rate than the catalyst operating at a lower temperature in the range of the speed range tested. Also the external indicators, such as power and torque for the case of higher operating temperature took values over 70% higher. The research is one of the stages of a comprehensive assessment of the possibility of adaptation of compression ignition engines to CNG-only fueling.

Sign in / Sign up

Export Citation Format

Share Document