scholarly journals On the Population of Triplet States of 2-Seleno-Thymine

Author(s):  
Danillo Valverde ◽  
Sebastian Mai ◽  
Adalberto Vasconcelos Sanches de Araujo ◽  
Sylvio Canuto ◽  
Leticia Gonzalez ◽  
...  

The population and depopulation mechanisms leading to the lowest-lying triplet states of the 2-Se-Thymine were studied at the MS-CASPT2/cc-pVDZ level of theory. Several critical points on different potential energy hypersurfaces...

2000 ◽  
Vol 78 (12) ◽  
pp. 1535-1543 ◽  
Author(s):  
Antonio Vila ◽  
Enrique Carballo ◽  
Ricardo A Mosquera

The integrated values of the electron population, electron energy, nucleus–electron potential energy interaction, dipole moment and volume of the oxygen atoms, and the main properties of the O—C bond critical points, were determined by employing the theory of atoms in molecules and 6-31++G**//6-31G* wave functions for a series of 25 unbranched alkyl monoethers. These results were used to assess the degree of approximate transferability of the oxygen atom along this series in terms of the particular alkyl radicals bonded to it. It has been found that a set of six different oxygen atoms is necessary to classify all the computed values. It can be established that the oxygen atoms bonded to propyl and larger radicals can be treated, in practice, as a transferable fragment, while those bonded to at least one smaller radical are specific. Though the total HF energy and the available experimental heats of formation are well fitted by a traditional additivity scheme that distinguishes only among O, CH2, and CH3 units, it has been found that the energy properties are influenced by the size of the molecule.Key words: transferability, AIM theory, ethers.


1988 ◽  
Vol 66 (8) ◽  
pp. 2034-2040 ◽  
Author(s):  
Ratnakar K. Gosavi ◽  
Otto P. Strausz

Ab initio calculations with uniform quality gaussian basis set were carried out at the RHF-SCF and CI level on the potential energy curves of the low lying triplet states of Be2 and Be3. The lowest excited state, the [Formula: see text] state of Be2 is 26.0 kcal/mol higher in energy than the ground [Formula: see text] state, and 39.4 kcal/mol lower than the separated Be(1S0) + Be(3P) atoms, with the s, p, d basis set. The next higher triplet state, the 3Πg, is only 8.7 kcal/mol above the lowest [Formula: see text] state. The [Formula: see text] and 3Πu states lie comparatively much higher than the [Formula: see text] state. All the triplet state potential curves have a bonding nature. The lowest triplet state [Formula: see text] in Be3 with D∞h symmetry lies ~15 kcal/mol above the ground [Formula: see text] state, and 48.2 kcal/mol lower than the separated atoms, 2Be(1S0) + Be(3P). The [Formula: see text] state has 1,3-diradical character and in all the higher triplet states α spin electrons are delocalized among the three Be atoms. The next higher triplet state 3Πu is 7.7 kcal/mol above the lowest [Formula: see text] state. The [Formula: see text] and 3Πg states lie much higher than the [Formula: see text] and 3Πu states. Like the triplet states of Be2, all Be3 triplet states have a bonding nature. Reaction path studies on the Be(3P) energy transfer reactions, [Formula: see text] and [Formula: see text] show that these reactions do not feature any activation energy barrier.


1996 ◽  
Vol 371 ◽  
pp. 85-90 ◽  
Author(s):  
Jaime Fernández Rico ◽  
Alfredo Aguado ◽  
Miguel Paniagua

2000 ◽  
Vol 112 (11) ◽  
pp. 4923-4934 ◽  
Author(s):  
Marie-Noëlle Ramquet ◽  
Georges Dive ◽  
Dominique Dehareng

2020 ◽  
Vol 22 (33) ◽  
pp. 18488-18498 ◽  
Author(s):  
Debasish Koner ◽  
Juan Carlos San Vicente Veliz ◽  
Raymond J. Bemish ◽  
Markus Meuwly

Reproducing kernel-based potential energy surface based on MRCI+Q/aug-cc-pVTZ energies for the triplet states of N2O and quasiclassical dynamical study for the reaction, dissociation and vibrational relaxation.


2009 ◽  
Vol 113 (13) ◽  
pp. 3223-3226 ◽  
Author(s):  
Martin Šala ◽  
Milan Hodošček ◽  
Sundaram Arulmozhiraja ◽  
Toshihiro Fujii

Sign in / Sign up

Export Citation Format

Share Document