Acylative kinetic resolution of racemic methyl-substituted cyclic alkylamines with 2,5-dioxopyrrolidin-1-yl (R)-2-phenoxypropanoate

Author(s):  
Dmitry Gruzdev ◽  
Sergey Vakarov ◽  
Marina Korolyova ◽  
Ekaterina V. Bartashevich ◽  
Andrey Tumashov ◽  
...  

Diastereoselective acylation of a number of racemic methyl-substituted cyclic alkylamines with active esters of 2-phenoxypropanoic acid was studied in detail. Ester of (R)-2-phenoxypropanoic acid and N-hydroxysuccinimide was found to be...

2008 ◽  
Vol 19 (13) ◽  
pp. 1536-1548 ◽  
Author(s):  
Sameer Chavda ◽  
Elliot Coulbeck ◽  
Marco Dingjan ◽  
Jason Eames ◽  
Anthony Flinn ◽  
...  

2007 ◽  
Vol 18 (21) ◽  
pp. 2515-2530 ◽  
Author(s):  
Ewan Boyd ◽  
Elliot Coulbeck ◽  
Gregory S. Coumbarides ◽  
Sameer Chavda ◽  
Marco Dingjan ◽  
...  

2020 ◽  
Vol 18 (21) ◽  
pp. 4024-4028
Author(s):  
David D. S. Thieltges ◽  
Kai D. Baumgarten ◽  
Carina S. Michaelis ◽  
Constantin Czekelius

Electronically modified, fluorinated catechins and epicatechins are enantioselectively synthesized in a short, convergent sequence via kinetic resolution.


2006 ◽  
Author(s):  
Jason Eames ◽  
Gregory Coumbarides ◽  
Marco Dingjan ◽  
Tony Flinn ◽  
Northern Northen ◽  
...  

2020 ◽  
Author(s):  
Kousuke Ebisawa ◽  
Kana Izumi ◽  
Yuka Ooka ◽  
Hiroaki Kato ◽  
Sayori Kanazawa ◽  
...  

Catalytic enantioselective synthesis of tetrahydrofurans, which are found in the structures of many biologically active natural products, via a transition-metal catalyzed-hydrogen atom transfer (TM-HAT) and radical-polar crossover (RPC) mechanism is described herein. Hydroalkoxylation of non-conjugated alkenes proceeded efficiently with excellent enantioselectivity (up to 94% ee) using a suitable chiral cobalt catalyst, <i>N</i>-fluoro-2,4,6-collidinium tetrafluoroborate, and diethylsilane. Surprisingly, absolute configuration of the product was highly dependent on the steric hindrance of the silane. Slow addition of the silane, the dioxygen effect in the solvent, thermal dependency, and DFT calculation results supported the unprecedented scenario of two competing selective mechanisms. For the less-hindered diethylsilane, a high concentration of diffused carbon-centered radicals invoked diastereoenrichment of an alkylcobalt(III) intermediate by a radical chain reaction, which eventually determined the absolute configuration of the product. On the other hand, a more hindered silane resulted in less opportunity for radical chain reaction, instead facilitating enantioselective kinetic resolution during the late-stage nucleophilic displacement of the alkylcobalt(IV) intermediate.


Sign in / Sign up

Export Citation Format

Share Document