scholarly journals Triarylamine-based porous coordination polymers performing both hydrogen atom transfer and photoredox catalysis for regioselective α-amino C(sp3)–H arylation

2021 ◽  
Author(s):  
Hanning Li ◽  
Yang Yang ◽  
Jing Xu ◽  
Cheng He ◽  
Chunying Duan

Direct functionalization of C(sp3)–H bonds in a predictable, selective and recyclable manner has become a central challenge in modern organic chemistry. Through incorporating different triarylamine-containing ligands into one coordination polymer,...

2021 ◽  
Author(s):  
Ling Chen ◽  
Jing Hou ◽  
Ming Zheng ◽  
Le-Wu Zhan ◽  
Wan-Ying Tang ◽  
...  

A visible-light-driven direct carbonylative coupling of simple alkanes and alkenes via the combination of the hydrogen atom transfer process and photoredox catalysis has been demonstrated. Employing the N-alkoxyazinium salt as...


2020 ◽  
Author(s):  
Han-Li Sun ◽  
Fan Yang ◽  
Wei-Ting Ye ◽  
Jun-Jie Wang ◽  
Rong Zhu

A general protocol has been developed for the Markovnikov-selective intermolecular hydrofunctionalization based on visible-light-mediated Co/Ru dual catalysis. The key feature involves the photochemical oxidation of an organocobalt(III) intermediate derived from hydrogen atom transfer, which is supported by electrochemical analysis, quenching studies and stoichiometric experiments. This unique redox process enables the efficient branch-selective alkylation of pharmaceutically important nucleophiles (phenols, sulfonamides and various N-heterocycles) using a wide range of alkenes including moderately electron-deficient ones. Moreover, light-gated polar functionalization via organocobalt species was demonstrated.


2019 ◽  
Vol 84 (10) ◽  
pp. 6475-6482 ◽  
Author(s):  
Li Chen ◽  
Li-Na Guo ◽  
Zhi-Yong Ma ◽  
Yu-Rui Gu ◽  
Junjie Zhang ◽  
...  

2021 ◽  
Author(s):  
Changhui Dai ◽  
Yanling Zhan ◽  
Ping Liu ◽  
Peipei Sun

Direct C–H silylation of quinoxalinones was achieved by the combination of organic photoredox catalysis and hydrogen atom transfer (HAT) under ambient air conditions.


2018 ◽  
Vol 9 (2) ◽  
pp. 336-344 ◽  
Author(s):  
Brandon A. Vara ◽  
Xingpin Li ◽  
Simon Berritt ◽  
Christopher R. Walters ◽  
E. James Petersson ◽  
...  

A mechanistically distinct, Ni/photoredox-catalyzed arylation of unprotected, native thiols (e.g., cysteine residues) is reported – a process initiated through a visible light-promoted, hydrogen atom transfer (HAT) event under ambient conditions.


2019 ◽  
Vol 84 (11) ◽  
pp. 6895-6903 ◽  
Author(s):  
Junlei Wang ◽  
Binbin Huang ◽  
Yuan Gao ◽  
Chao Yang ◽  
Wujiong Xia

Synlett ◽  
2021 ◽  
Author(s):  
Padmanabha Venkatesh ◽  
Julian G West

Hydrogen atom transfer (HAT) is one of the fundamental transformations of organic chemistry, allowing for the interconversion of open and closed shell species through the concerted movement of a proton an electron. While the value of this transformation is well-appreciated in isolation, allowing for homolytic C–H activation via abstractive HAT and radical reduction via donative HAT, cooperative HAT (cHAT) reactions, where two hydrogen atoms are removed or donated to vicinal reaction centers in succession proceeding through radical intermediates, are comparatively unknown outside of the mechanism of desaturase enzymes. This tandem reaction scheme has important ramifications in the thermochemistry of each HAT, with the bond dissociation energy of the C–H bond adjacent to the radical center being significantly lowered compared to that of the parent alkane, allowing for each HAT to be performed by different species. Here we discuss the thermodynamic basis of this bond strength differential in cHAT and demonstrate its use as a design principle in organic chemistry for both dehydrogenative (application 1) and hydrogenative (application 2) reactions. Together, we hope that this overview will highlight the exciting reactivity possible with cHAT and inspire further development using this mechanistic approach.


2020 ◽  
Author(s):  
Han-Li Sun ◽  
Fan Yang ◽  
Wei-Ting Ye ◽  
Jun-Jie Wang ◽  
Rong Zhu

A general protocol has been developed for the Markovnikov-selective intermolecular hydrofunctionalization based on visible-light-mediated Co/Ru dual catalysis. The key feature involves the photochemical oxidation of an organocobalt(III) intermediate derived from hydrogen atom transfer, which is supported by electrochemical analysis, quenching studies and stoichiometric experiments. This unique redox process enables the efficient branch-selective alkylation of pharmaceutically important nucleophiles (phenols, sulfonamides and various N-heterocycles) using a wide range of alkenes including moderately electron-deficient ones. Moreover, light-gated polar functionalization via organocobalt species was demonstrated.


ACS Catalysis ◽  
2021 ◽  
Vol 11 (17) ◽  
pp. 11171-11179
Author(s):  
Julia A. Turner ◽  
Nicholas Rosano ◽  
Daniel J. Gorelik ◽  
Mark S. Taylor

Sign in / Sign up

Export Citation Format

Share Document