Orientational relaxation in hydrogen-bonded systems: aqueous solutions of electrolytes

1993 ◽  
Vol 89 (12) ◽  
pp. 1985 ◽  
Author(s):  
Andrey K. Lyashchenko ◽  
Alexander S. Lileev ◽  
Alexander Yu. Zasetsky ◽  
Tamara A. Novskova ◽  
Vladimir I. Gaiduk
1993 ◽  
Vol 89 (12) ◽  
pp. 1975 ◽  
Author(s):  
Vladimir I. Gaiduk ◽  
Tamara A. Novskova ◽  
Valery V. Brekhovskikh

1977 ◽  
Vol 42 (9) ◽  
pp. 2642-2650
Author(s):  
F. Kaštánek ◽  
J. Kratochvíl ◽  
J. Pata ◽  
M. Rylek

1984 ◽  
Vol 49 (5) ◽  
pp. 1061-1078 ◽  
Author(s):  
Jiří Čeleda ◽  
Stanislav Škramovský

Based on the earlier paper introducing a concept of the apparent parachor of a solute in the solution, we have eliminated in the present work algebraically the effect which is introduced into this quantity by the additivity of the apparent molal volumes. The difference remaining from the apparent parachor after substracting the contribution corresponding to the apparent volume ( for which the present authors suggest the name metachor) was evaluated from the experimental values of the surface tension of aqueous solutions for a set of 1,1-, 1,2- and 2,1-valent electrolytes. This difference showed to be independent of concentration up to the very high values of the order of units mol dm-3 but it was directly proportional to the number of the free charges (with a proportionality factor 5 ± 1 cm3 mol-1 identical for all studied electrolytes). The metachor can be, for this reason, a suitable characteristic for detection of the association of ions and formation of complexes in the solutions of electrolytes, up to high concentrations where other methods are failing.


2006 ◽  
Vol 38 (11) ◽  
pp. 1474-1478 ◽  
Author(s):  
Monimul Huque ◽  
Iqbal Ahmed Siddiquey ◽  
Md. Nizam Uddin

1977 ◽  
Vol 81 (24) ◽  
pp. 2237-2240 ◽  
Author(s):  
J. N. Spencer ◽  
Judy R. Sweigart ◽  
Michael E. Brown ◽  
Ronald L. Bensing ◽  
Thomas L. Hassinger ◽  
...  

2009 ◽  
Vol 08 (04) ◽  
pp. 691-711 ◽  
Author(s):  
FENG FENG ◽  
HUAN WANG ◽  
WEI-HAI FANG ◽  
JIAN-GUO YU

A modified semiempirical model named RM1BH, which is based on RM1 parameterizations, is proposed to simulate varied biological hydrogen-bonded systems. The RM1BH is formulated by adding Gaussian functions to the core–core repulsion items in original RM1 formula to reproduce the binding energies of hydrogen bonding of experimental and high-level computational results. In the parameterizations of our new model, 35 base-pair dimers, 18 amino acid residue dimers, 14 dimers between a base and an amino acid residue, and 20 other multimers were included. The results performed with RM1BH were compared with experimental values and the benchmark density-functional (B3LYP/6-31G**/BSSE) and Möller–Plesset perturbation (MP2/6-31G**/BSSE) calculations on various biological hydrogen-bonded systems. It was demonstrated that RM1BH model outperforms the PM3 and RM1 models in the calculations of the binding energies of biological hydrogen-bonded systems by very close agreement with the values of both high-level calculations and experiments. These results provide insight into the ideas, methods, and views of semiempirical modifications to investigate the weak interactions of biological systems.


Sign in / Sign up

Export Citation Format

Share Document