scholarly journals The control of isocitrate oxidation by rat liver mitochondria

1969 ◽  
Vol 114 (2) ◽  
pp. 215-225 ◽  
Author(s):  
D. G. Nicholls ◽  
P. B. Garland

1. The factors capable of affecting the rate of isocitrate oxidation in intact mitochondria include the rate of isocitrate penetration, the activity of the NAD-specific and NADP-specific isocitrate dehydrogenases, the activity of the transhydrogenase acting from NADPH to NAD+, the rate of NADPH oxidation by the reductive synthesis of glutamate and the activity of the respiratory chain. A quantitative assessment of these factors was made in intact mitochondria. 2. The kinetic properties of the NAD-specific and NADP-specific isocitrate dehydrogenases extracted from rat liver mitochondria were examined. 3. The rate of isocitrate oxidation through the respiratory chain in mitochondria with coupled phosphorylation is approximately equal to the maximal of the NAD-specific isocitrate dehydrogenase but at least ten times as great as the transhydrogenase activity from NADPH to NAD+. 4. It is concluded that the energy-dependent inhibition of isocitrate oxidation by palmitoylcarnitine oxidation is due to an inhibition of the NAD-specific isocitrate dehydrogenase. 5. Kinetic studies of NAD-specific isocitrate dehydrogenase demonstrated that its activity could be inhibited by one or more of the following: an increased reduction of mitochondrial NAD, an increased phosphorylation of mitochondrial adenine nucleotides or a fall in the mitochondrial isocitrate concentration. 6. Uncoupling agents stimulate isocitrate oxidation by an extent equal to the associated stimulation of transhydrogenation from NADPH to NAD+. 7. A technique is described for continuously measuring with a carbon dioxide electrode the synthesis of glutamate from isocitrate and ammonia.

1975 ◽  
Vol 148 (3) ◽  
pp. 527-531 ◽  
Author(s):  
D R Fayle ◽  
G J Barritt ◽  
F L Bygrave

The effect of the local anaesthetic, butacaine, on adenine nucleotide binding and translocation in rat liver mitochondria partially depleted of their adenine nucleotide content was investigated. The range of butacaine concentrations that inhibit adenine nucleotide translocation and the extent of the inhibition are similar to the values obtained for native mitochondria. Butacaine does not alter either the total number of atractyloside-sensitive binding sites of depleted mitochondria, or the affinity of these sites for ADP or ATP under conditions where a partial inhibition of the rate of adenine nucleotide translocation is observed. The data are consistent with an effect of butacaine on the process by which adenine nucleotides are transported across the mitochondrial inner membrane rather than on the binding of adenine nucleotides to sites on the adenine nucleotide carrier. The results are briefly discussed in relation to the use of local anaesthetics in investigations of the mechanism of adenine nucleotide translocation.


1968 ◽  
Vol 46 (9) ◽  
pp. 1003-1008 ◽  
Author(s):  
K. B. Freeman ◽  
D. Haldar

Chloramphenicol and its isomers and analogues have been found to inhibit the oxidation of NADH, but not that of succinate, by beef heart mitochondria. They must therefore inhibit the NADH dehydrogenase segment of the respiratory chain. Chloramphenicol gave 50% inhibition at a concentration of 1 mM. The methylthio analogue of chloramphenicol inhibited NADH – coenzyme Q6 reductase but not NADH–ferricyanide reductase. Spectrophotometric observations suggest that these inhibitors act between NADH and flavin in coupled rat liver mitochondria and between flavin and cytochrome b in uncoupled beef heart mitochondria.


1972 ◽  
Vol 18 (2) ◽  
pp. 265-269 ◽  
Author(s):  
Fritz Reusser

The antibiotic, desdanine, acts as an uncoupling agent of oxidative phosphorylation in rat liver mitochondria. In addition, mitochondrial respiration is also impaired but to a lesser degree. Studies of individual reaction sequences occurring within the respiratory chain indicate that desdanine interferes with electron transfer at the flavoprotein regions associated with the oxidation of NADH and succinate. The flavoprotein region associated with the oxidation of succinate is more susceptible to desdanine than the NADH-linked flavoprotein region.


1969 ◽  
Vol 114 (3) ◽  
pp. 597-610 ◽  
Author(s):  
D. Shepherd ◽  
P. B. Garland

1. Citrate synthase (EC 4.1.3.7) was purified 750-fold from rat liver. 2. Measurements of the Michaelis constants for the substrates of citrate synthase gave values of 16μm for acetyl-CoA and 2μm for oxaloacetate. Each value is independent of the concentration of the other substrate. 3. The inhibition of citrate synthase by ATP, ADP and AMP is competitive with respect to acetyl-CoA. With respect to oxaloacetate the inhibition by AMP is competitive, but the inhibition by ADP and ATP is mixed, being partially competitive. 4. At low concentrations of both substrates the inhibition by ATP is sigmoidal and a Hill plot exhibits a slope of 2·5. 5. The pH optimum of the enzyme is 8·7, and is not significantly affected by ATP. 6. Mg2+ inhibits citrate synthase slightly, but relieves the inhibition caused by ATP in a complex manner. 7. At constant total adenine nucleotide concentration made up of various proportions of ATP, ADP and AMP, the activity of citrate synthase is governed by the concentration of the sum of the energy-rich phosphate bonds of ADP and ATP. 8. The sedimentation coefficient of the enzyme, as measured by activity sedimentation, is 6·3s, equivalent to molecular weight 95000.


1978 ◽  
Vol 176 (3) ◽  
pp. 705-714 ◽  
Author(s):  
Veronica Prpić ◽  
Terry L. Spencer ◽  
Fyfe L. Bygrave

1. Mitochondria isolated from rat liver by centrifugation of the homogenate in buffered iso-osmotic sucrose at between 4000 and 8000g-min, 1h after the administration in vivo of 30μg of glucagon/100g body wt., retain Ca2+ for over 45min after its addition at 100nmol/mg of mitochondrial protein in the presence of 2mm-Pi. In similar experiments, but after the administration of saline (0.9% NaCl) in place of glucagon, Ca2+ is retained for 6–8min. The ability of glucagon to enhance Ca2+ retention is completely prevented by co-administration of 4.2mg of puromycin/100g body wt. 2. The resting rate of respiration after Ca2+ accumulation by mitochondria from glucagon-treated rats remains low by contrast with that from saline-treated rats. Respiration in the latter mitochondria increased markedly after the Ca2+ accumulation, reflecting the uncoupling action of the ion. 3. Concomitant with the enhanced retention of Ca2+ and low rates of resting respiration by mitochondria from glucagon-treated rats was an increased ability to retain endogenous adenine nucleotides. 4. An investigation of properties of mitochondria known to influence Ca2+ transport revealed a significantly higher concentration of adenine nucleotides but not of Pi in those from glucagon-treated rats. The membrane potential remained unchanged, but the transmembrane pH gradient increased by approx. 10mV, indicating increased alkalinity of the matrix space. 5. Depletion of endogenous adenine nucleotides by Pi treatment in mitochondria from both glucagon-treated and saline-treated rats led to a marked diminution in ability to retain Ca2+. The activity of the adenine nucleotide translocase was unaffected by glucagon treatment of rats in vivo. 6. Although the data are consistent with the argument that the Ca2+-translocation cycle in rat liver mitochondria is a target for glucagon action in vivo, they do not permit conclusions to be drawn about the molecular mechanisms involved in the glucagon-induced alteration to this cycle.


Sign in / Sign up

Export Citation Format

Share Document