scholarly journals A comparative study of the molecular structures of the plasma membranes and the smooth and the rough endoplasmic-reticulum membranes from rat liver

1972 ◽  
Vol 129 (3) ◽  
pp. 781-788 ◽  
Author(s):  
F. Morin ◽  
S. Tay ◽  
H. Simpkins

Plasma-membrane as well as smooth-, rough- and degranulated-endoplasmic-reticulum-membrane fractions were isolated from the microsomal pellet of rat liver. The purity of these fractions, as determined by marker-enzyme activities, electron microscopy, cholesterol content and RNA content, was found to be adequate for a comparative structural study. Major differences in lipid and protein composition were found to exist between the plasma membrane and the endoplasmic reticulum, but not between the smooth and the rough fractions of the endoplasmic reticulum. Differences in the location of membrane protein thiol groups and the mobility of the membrane phospholipids were observed between the plasma membranes and the endoplasmic reticulum, and these could be explained by differences in protein and lipid composition. However, by employing fluorescence and spin-labelling techniques structural changes were also observed between the smooth and the rough endoplasmic-reticulum fractions. These results suggest that the structural heterogeneity existing between the two latter membrane fractions occurs near or on their membrane surfaces and is not due to the greater number of ribosomes bound to the rough endoplasmic-reticulum fraction.

1977 ◽  
Vol 55 (8) ◽  
pp. 876-885 ◽  
Author(s):  
Patricia L. Chang ◽  
John R. Riordan ◽  
Mario A. Moscarello ◽  
Jennifer M. Sturgess

To study membrane biogenesis and to test the validity of the endomembrane flow hypothesis, incorporation of 32P and [Me-3H]choline in vivo into membranes of the rat liver was followed. Rough microsomal, Golgi-rich, and plasma membrane fractions were monitored with marker enzyme assays and shown with morphometric analysis to contain 82% rough microsomes, at least 70% Golgi complexes, and 88% plasma membranes, respectively. Membrane subfractions from the rough microsomal and Golgi-rich fractions were prepared by sonic disruption.At 5 to 30 min after 32P injection, the specific radioactivity of phosphatidylcholine was higher in the rough microsomal membranes than in the Golgi membranes. From 1 to 3 h, the specific activity of phosphatidylcholine in Golgi membranes became higher and reached the maximum at about 3 h. Although the plasma membrane had the lowest specific radioactivity throughout 0.25–3 h, it increased rapidly thereafter to attain the highest specific activity at 5 h. Both rough microsomal and plasma membranes reached their maxima at 5 h.The specific radioactivity of [32P]phosphatidylethanolamine in the three membrane fractions was similar to that of [32P]phosphatidylcholine except from 5 to 30 min, when the specific radioactivity of phosphatidylethanolamine in the Golgi membranes was similar to the rough microsomal membranes.At 15 min to 5 h after [Me-3H]choline injection, more than 90% of the radioactivity in all the membranes was acid-precipitable. The specific radioactivities of the acid-precipitated membranes, expressed as dpm per milligram protein, reached the maximum at 3 h. After [Me-3H]choline injection, the specific radioactivity of phosphatidylcholine separated from the lipid extract of the acid-precipitated membranes (dpm per micromole phosphorus) did not differ significantly in the three membrane fractions. The results indicated rapid incorporation of choline into membrane phosphatidylcholine by the rough endoplasmic reticulum, Golgi, and plasma membranes simultaneously.The data with both 32P and [Me-3H]choline precursors did not support the endomembrane flow hypothesis. The Golgi complexes apparently synthesized phosphatidylethanolamine and incorporated choline into phosphatidylcholine as well as the endoplasmic reticulum. The results are discussed with relevance to current hypotheses on the biogenesis and transfer of membrane phospholipids.


1977 ◽  
Vol 72 (3) ◽  
pp. 714-725 ◽  
Author(s):  
G C Shore ◽  
J R Tata

Low-speed centrifugation (640 g) of rat liver homogenates, prepared with a standard ionic medium, yielded a pellet from which a rapidly sedimenting fraction of rough endoplasmic reticulum (RSER) was recovered free of nuclei. This fraction contained 20-25% of cellular RNA and approximately 30% of total glucose-6-phosphatase (ER marker) activity. A major portion of total cytochrome c oxidase (mitochondrial marker) activity was also recovered in this fraction, with the remainder sedimenting between 640 and 6,000 g. Evidence is provided which indicates that RSER may be intimately associated with mitochondria. Complete dissociation of ER from mitochondria in the RSER fraction required very harsh conditions. Sucrose density gradient centrifugation analysis revealed that 95% dissociation could be achieved when the RSER fraction was first resuspended in buffer containing 500 mM KCl and 20 mM EDTA, and subjected to shearing. Excluding KCl, EDTA, or shearing from the procedure resulted in incomplete separation. Both electron microscopy and marker enzyme analysis of mitochondria purified by this procedure indicated that some structural damage and leakage of proteins from matrix and intermembrane compartments had occurred. Nevertheless, when mitochondria from RSER and postnuclear 6,000-g pellet fractions were purified in this way fromanimals injected with [35S]methionine +/- cycloheximide, mitochondria from the postnuclear 6,000-g pellet were found to incorporate approximately two times more cytoplasmically synthesized radioactive protein per milligram mitochondrial protein (or per unit cytochrome c oxidase activity) than did mitochondria from the RSER fraction. Mitochondria-RSER associations, therefore, do not appear to facilitate enhanced incorporation of mitochondrial proteins which are newly synthesized in the cytoplasm.


1989 ◽  
Vol 262 (2) ◽  
pp. 535-539 ◽  
Author(s):  
B Antoine ◽  
A Visvikis ◽  
C Thioudellet ◽  
A Rahimi-Pour ◽  
N Strazielle ◽  
...  

Adult rat liver gamma-glutamyltransferase (GGT) has been poorly characterized because of its very low concentration in the tissue. In contrast with the kidney, the liver enzyme is inducible by some xenobiotics, and its relationship to hepatic ontogeny and carcinogenesis seems to be important. Liver GGT polypeptides were identified by immunoblot analysis in subcellular fractions (rough endoplasmic reticulum, smooth endoplasmic reticulum, Golgi membranes and plasma membranes). Rat liver GGT appeared as a series of polypeptides corresponding to different maturation steps. Polypeptides related to the heavy subunit of GGT were detected in rough endoplasmic reticulum at 49, 53 and 55 kDa, and in Golgi membranes at 55, 60 and 66 kDa. Two polypeptides related to the light subunit of GGT were also observed in Golgi membranes. In plasma membranes GGT was composed of 100 kDa, 66 kDa and 31 kDa polypeptides. The 66 kDa component could correspond to the heavy subunit of the rat liver enzyme, and if so has a molecular mass higher than that of the purified rat kidney form of GGT (papain-treated). These data suggest different peptide backbones for the heavy subunits of liver GGT and kidney GGT.


1991 ◽  
Vol 280 (2) ◽  
pp. 295-302 ◽  
Author(s):  
A H Futerman ◽  
R E Pagano

We examined the intracellular site(s) and topology of glucosylceramide (GlcCer) synthesis in subcellular fractions from rat liver, using radioactive and fluorescent ceramide analogues as precursors, and compared these results with those obtained in our recent study of sphingomyelin (SM) synthesis in rat liver [Futerman, Stieger, Hubbard & Pagano (1990) J. Biol. Chem. 265, 8650-8657]. In contrast with SM synthesis, which occurs principally at the cis/medial Golgi apparatus, GlcCer synthesis was more widely distributed, with substantial amounts of synthesis detected in a heavy (cis/medial) Golgi-apparatus subfraction, a light smooth-vesicle fraction that is almost devoid of an endoplasmic-reticulum marker enzyme (glucose-6-phosphatase), and a heavy vesicle fraction. Furthermore, no GlcCer synthesis was detected in an enriched plasma-membrane fraction after accounting for contamination by Golgi-apparatus membranes. These results suggest that a significant amount of GlcCer may be synthesized in a pre- or early Golgi-apparatus compartment. Unlike SM synthesis, which occurs at the luminal surface of the Golgi apparatus, GlcCer synthesis appeared to occur at the cytosolic surface of intracellular membranes, since (i) limited proteolytic digestion of intact Golgi-apparatus vesicles almost completely inhibited GlcCer synthesis, and (ii) the extent of UDP-glucose translocation into the Golgi apparatus was insufficient to account for the amount of GlcCer synthesis measured. These findings imply that, after its synthesis, GlcCer must undergo transbilayer movement to the luminal surface to account for the known topology of higher-order glycosphingolipids within the Golgi apparatus and plasma membrane.


1979 ◽  
Vol 180 (3) ◽  
pp. 449-453 ◽  
Author(s):  
M J Smith ◽  
J B Schreiber ◽  
G Wolf

The subcellular distribution of the enzyme catalysing the conversion of retinyl phosphate and GDP-[14C]mannose into [14C]mannosyl retinyl phosphate was determined by using subcellular fractions of rat liver. Purity of fractions, as determined by marker enzymes, was 80% or better. The amount of mannosyl retinyl phosphate formed (pmol/min per mg of protein) for each fraction was: rough endoplasmic reticulum 0.48 +/- 0.09 (mean +/- S.D.); smooth membranes (consisting of 60% smooth endoplasmic reticulum and 40% Golgi apparatus), 0.18 +/- 0.03; Golgi apparatus, 0.13 +/- 0.03; and plasma membrane 0.02.


1979 ◽  
Vol 80 (1) ◽  
pp. 37-52 ◽  
Author(s):  
E D Jarasch ◽  
J Kartenbeck ◽  
G Bruder ◽  
A Fink ◽  
D J Morré ◽  
...  

Fractions of plasma membranes, Golgi apparatus, endoplasmic reticulum (ER), and nuclear envelope were isolated from rat liver and were characterized by electron microsocpe and biochemical methods. The purity of the fractions was controlled by morphometry and by marker enzyme activities. Amounts of cytochromes b5, P-450, and P-420 were measured, as well as the NADPH- and NADPH-cytochrome c reductase activities. The pigments of the microsomal electron transport system were found in all membrane fractions in relatively high amounts, thus excluding an origin by microsomal contamination. Purified preparations of plasma membrane and Golgi apparatus contained approximately 30% of the cytochrome b5 and cytochrome P-450 + P-420 found in ER membranes. Plasma membranes were also characterized by a high ratio of P-420/450. Degradation of cytochromes P-450 and P-420 was relatively rapid in all fractions, except in the ER. Cytochrome b5 extracted from plasma membranes was spectrophotometrically and enzymatically indistinguishable from ER cytochrome b5. However, immunnlogical characterization with rabbit antibodies against the trypsin-resistant core of microsomal cytochrome b5 showed the presence of at least two types of cytochrome b5 in ER membranes, in contrast to the plasma membranes in which only one of these components was detected. This immunological differentiation also demonstrates that the plasma membrane-bound cytochrome b5 is endogenous to this membrane and does not reflect contamination by ER elements. We conclude that cytochromes b5, P-450, and P-420 are not confined only to ER and nuclear membranes but also occur in signficant amounts in Golgi apparatus and plasma membranes. The findings are discussed in relation to observations of similar redox components in Golgi apparatus, secretory vesicles, and plasma membranes of other cells.


Sign in / Sign up

Export Citation Format

Share Document