luminal surface
Recently Published Documents


TOTAL DOCUMENTS

300
(FIVE YEARS 30)

H-INDEX

44
(FIVE YEARS 2)

Author(s):  
Kazuhiro Tochigi ◽  
Ryo Nagaoka ◽  
Jens Erik Wilhjelm ◽  
Hideyuki Hasegawa

Abstract In the early stage of atherosclerosis, the luminal surface of the arterial wall becomes rough. Methods for distinguishing between the reflected and backscattered components in the ultrasonic echo from the arterial wall has the potential to be used as a method for assessment of the roughness of the arterial wall. In this study, we proposed a method to distinguish between the reflected and backscattered components using a technique based on plane wave compounding. This method was evaluated by experiments using planar phantoms with rough surfaces made of polyurethane rubber. The coefficient of variation calculated from the mean value of the reflection component and the standard deviation of the backscattering component was proportional to the roughness of the rubber phantom. This result shows the potential usefulness of this method for analyzing surface roughness of the arterial wall.


Proteomes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 45
Author(s):  
Jennifer J. Hill ◽  
Arsalan S. Haqqani ◽  
Danica B. Stanimirovic

Interrogation of the molecular makeup of the blood–brain barrier (BBB) using proteomic techniques has contributed to the cataloguing and functional understanding of the proteins uniquely organized at this specialized interface. The majority of proteomic studies have focused on cellular components of the BBB, including cultured brain endothelial cells (BEC). Detailed proteome mapping of polarized BEC membranes and their intracellular endosomal compartments has led to an improved understanding of the processes leading to internalization and transport of various classes of molecules across the BBB. Quantitative proteomic methods have further enabled absolute and comparative quantification of key BBB transporters and receptors in isolated BEC and microvessels from various species. However, translational studies further require in vivo/in situ analyses of the proteins exposed on the luminal surface of BEC in vessels under various disease and treatment conditions. In vivo proteomics approaches, both profiling and quantitative, usually rely on ‘capturing’ luminally-exposed proteins after perfusion with chemical labeling reagents, followed by analysis with various mass spectrometry-based approaches. This manuscript reviews recent advances in proteomic analyses of luminal membranes of BEC in vitro and in vivo and their applications in translational studies focused on developing novel delivery methods across the BBB.


Author(s):  
Zhengping Hu ◽  
Issahy Cano ◽  
Patricia A. D’Amore

The endothelial glycocalyx is a negatively charged, carbohydrate-rich structure that arises from the luminal surface of the vascular endothelium and is comprised of proteoglycans, glycoproteins, and glycolipids. The glycocalyx, which sits at the interface between the endothelium and the blood, is involved in a wide array of physiological and pathophysiological processes, including as a mechanotransducer and as a regulator of inflammation. Most recently, components of the glycocalyx have been shown to play a key role in controlling angiogenesis. In this review, we briefly summarize the structure and function of the endothelial glycocalyx. We focus on its role and functions in vascular inflammation and angiogenesis and discuss the important unanswered questions in this field.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0254160
Author(s):  
Shunji Kurokawa ◽  
Yoshihide Hashimoto ◽  
Seiichi Funamoto ◽  
Kozue Murata ◽  
Akitatsu Yamashita ◽  
...  

Autologous vascular grafts are widely used in revascularization surgeries for small caliber targets. However, the availability of autologous conduits might be limited due to prior surgeries or the quality of vessels. Xenogeneic decellularized vascular grafts from animals can potentially be a substitute of autologous vascular grafts. Decellularization with high hydrostatic pressure (HHP) is reported to highly preserve extracellular matrix (ECM), creating feasible conditions for recellularization and vascular remodeling after implantation. In the present study, we conducted xenogeneic implantation of HHP-decellularized bovine vascular grafts from dorsalis pedis arteries to porcine carotid arteries and posteriorly evaluated graft patency, ECM preservation and recellularization. Avoiding damage of the luminal surface of the grafts from drying significantly during the surgical procedure increased the graft patency at 4 weeks after implantation (P = 0.0079). After the technical improvement, all grafts (N = 5) were patent with mild stenosis due to intimal hyperplasia at 4 weeks after implantation. Neither aneurysmal change nor massive thrombosis was observed, even without administration of anticoagulants nor anti-platelet agents. Elastica van Gieson and Sirius-red stainings revealed fair preservation of ECM proteins including elastin and collagen after implantation. The luminal surface of the grafts were thoroughly covered with von Willebrand factor-positive endothelium. Scanning electron microscopy of the luminal surface of implanted grafts exhibited a cobblestone-like endothelial cell layer which is similar to native vascular endothelium. Recellularization of the tunica media with alpha-smooth muscle actin-positive smooth muscle cells was partly observed. Thus, we confirmed that HHP-decellularized grafts are feasible for xenogeneic implantation accompanied by recellularization by recipient cells.


Biomolecules ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1016
Author(s):  
Rui Shang ◽  
Brian Rodrigues

Ninety percent of plasma fatty acids (FAs) are contained within lipoprotein-triglyceride, and lipoprotein lipase (LPL) is robustly expressed in the heart. Hence, LPL-mediated lipolysis of lipoproteins is suggested to be a key source of FAs for cardiac use. Lipoprotein clearance by LPL occurs at the apical surface of the endothelial cell lining of the coronary lumen. In the heart, the majority of LPL is produced in cardiomyocytes and subsequently is translocated to the apical luminal surface. Here, vascular LPL hydrolyzes lipoprotein-triglyceride to provide the heart with FAs for ATP generation. This article presents an overview of cardiac LPL, explains how the enzyme works, describes key molecules that regulate its activity and outlines how changes in LPL are brought about by physiological and pathological states such as fasting and diabetes, respectively.


PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0246221
Author(s):  
Mako Kobayashi ◽  
Masako Ohara ◽  
Yoshihide Hashimoto ◽  
Naoko Nakamura ◽  
Toshiya Fujisato ◽  
...  

Due to an increasing number of cardiovascular diseases, artificial heart valves and blood vessels have been developed. Although cardiovascular applications using decellularized tissue have been studied, the mechanisms of their functionality remain unknown. To determine the important factors for preparing decellularized cardiovascular prostheses that show good in vivo performance, the effects of the luminal surface structure of the decellularized aorta on thrombus formation and cell behavior were investigated. Various luminal surface structures of a decellularized aorta were prepared by heating, drying, and peeling. The luminal surface structure and collagen denaturation were evaluated by immunohistological staining, collagen hybridizing peptide (CHP) staining, and scanning electron microscopy (SEM) analysis. To evaluate the effects of luminal surface structure of decellularized aorta on thrombus formation and cell behavior, blood clotting tests and recellularization of endothelial cells and smooth muscle cells were performed. The results of the blood clotting test showed that the closer the luminal surface structure is to the native aorta, the higher the anti-coagulant property. The results of the cell seeding test suggest that vascular cells recognize the luminal surface structure and regulate adhesion, proliferation, and functional expression accordingly. These results provide important factors for preparing decellularized cardiovascular prostheses and will lead to future developments in decellularized cardiovascular applications.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Myriam Mimouni ◽  
Christophe Richard ◽  
Pierre Adenot ◽  
Martine Letheule ◽  
Anne Tarrade ◽  
...  

Abstract Background Pressurized Intra-Peritoneal Aerosol Chemotherapy (PIPAC) is an innovative treatment against peritoneal carcinomatosis. Doxorubicin is a common intra-venous chemotherapy used for peritoneal carcinomatosis and for PIPAC. This study evaluated the impact of increased PIPAC intraperitoneal pressure on the distribution and cell penetration of doxorubicin in a sheep model. Methods Doxorubicin was aerosolized using PIPAC into the peritoneal cavity of 6 ewes (pre-alpes breed): N = 3 with 12 mmHg intraperitoneal pressure (“group 12”) and N = 3 with 20 mmHg (“group 20”). Samples from peritoneum (N = 6), ovarian (N = 1), omentum (N = 1) and caecum (N = 1) were collected for each ewe. The number of doxorubicin positive cells was determined using the ratio between doxorubicine fluorescence-positive cell nuclei (DOXO+) over total number of DAPI positive cell nuclei (DAPI+). Penetration depth (μm) was defined as the distance between the luminal surface and the location of the deepest DOXO+ nuclei over the total number of cell nuclei that were stained with DAPI. Penetration depth (μm) was defined as the distance between the luminal surface and the location of the deepest DOXO+ nuclei. Results DOXO+ nuclei were identified in 87% of samples. All omental samples, directly localized in front of the nebulizer head, had 100% DOXO+ nuclei whereas very few nuclei were DOXO+ for caecum. Distribution patterns were not different between the two groups but penetration depth in ovary and caecum samples was significantly deeper in group 20. Conclusions This study showed that applying a higher intra-peritoneal pressure during PIPAC treatment leads to a deeper penetration of doxorubicin in ovarian and caecum but does not affect distribution patterns.


Author(s):  
Yuto Kawasaki ◽  
Yasue Hosoyamada ◽  
Takayuki Miyaki ◽  
Junji Yamaguchi ◽  
Soichiro Kakuta ◽  
...  

Focused-ion beam-scanning electron microscopic (FIB-SEM) tomography enables easier acquisition of a series of ultrastructural, sectional images directly from resin-embedded biological samples. In this study, to clarify the three-dimensional (3D) architecture of glomerular endothelial cells (GEnCs) in adult rats, we manually extracted GEnCs from serial FIB-SEM images and reconstructed them on an Amira reconstruction software. The luminal and basal surface structures were clearly visualized in the reconstructed GEnCs, although only the luminal surface structures could be observed by conventional SEM. The luminal surface visualized via the reconstructed GEnCs was quite similar to that observed through conventional SEM, indicating that 3D reconstruction could be performed with high accuracy. Thus, we successfully described the 3D architecture of normal GEnCs in adult rats more clearly and precisely than ever before. The GEnCs were found to consist of three major subcellular compartments, namely, the cell body, cytoplasmic ridges, and sieve plates, in addition to two associated subcellular compartments, namely, the globular protrusions and reticular porous structures. Furthermore, most individual GEnCs made up a “seamless” tubular shape, and some of them formed an autocellular junction to make up a tubular shape. FIB-SEM tomography with reconstruction is a powerful approach to better understand the 3D architecture of GEnCs. Moreover, the morphological information revealed in this study will be valuable for the 3D pathologic evaluation of GEnCs in animal and human glomerular diseases and the structural analysis of developmental processes in the glomerular capillary system.


2021 ◽  
Author(s):  
Alexander W. Justin ◽  
Sebastian Burgess ◽  
John Ong ◽  
Aishwarya G. Jacob ◽  
Sanjay Sinha ◽  
...  

ABSTRACTFabrication of tubular grafts de novo has been limited by the ability to produce constructs which fulfil the mechanical and biological requirements for implantation and function. In this work, we present a novel method for the formation of densified collagen hydrogel tubular grafts on the scale of human-sized vessels, with the required mechanical strength for future in vivo implantation. The seamless, densified collagen tubes are highly customisable in terms of density, luminal diameter and wall thickness; here we report tubes with luminal diameters 5 mm, 2 mm, and 50 μm, with wall thicknesses of 0.5-3 mm. We show that through genipin crosslinking, acid solubility and swelling of the collagen can be eliminated. Tensile testing shows that axial strength increases with starting collagen and crosslinker concentrations. The cell-compatible densification method enables a high density and uniformly distributed population of cells to be incorporated into the walls of the construct, as well as onto the luminal surface. Additionally, we report a method for generating tubes consisting of distinct cell domains in the walls. The cellular configurations at the boundary between the cell populations may be useful for disease modelling applications. We also demonstrate a method for luminal surface patterning of collagen tubes.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Wei Wang ◽  
Yingqian Zhang ◽  
Hui Hui ◽  
Wei Tong ◽  
Zechen Wei ◽  
...  

Abstract Background Reendothelialisation is the natural pathway that inhibits neointimal hyperplasia and in-stent restenosis. Circulating endothelial progenitor cells (EPCs) derived from bone marrow (BM) might contribute to endothelial repair. However, the temporal and spatial distributions of reendothelialisation and neointimal hyperplasia after EPC transplantation in injured arteries are currently unclear. Methods A carotid balloon injury (BI) model was established in Sprague-Dawley rats, and PKH26-labelled BM-derived EPCs were transplanted after BI. The carotid arteries were harvested on the first, fourth, seventh, and 14th day post-injury and analysed via light-sheet fluorescence microscopy and pathological staining (n = 3). EPC and human umbilical vein endothelial cell culture supernatants were collected, and blood samples were collected before and after transplantation. The paracrine effects of VEGF, IGF-1, and TGF-β1 in cell culture supernatants and serum were analysed by enzyme-linked immunosorbent assay (n = 4). Results Transplanted EPCs labelled with PKH26 were attached to the injured luminal surface the first day after BI. In the sham operation group, the transplanted EPCs did not adhere to the luminal surface. From the fourth day after BI, the mean fluorescence intensity of PKH26 decreased significantly. However, reendothelialisation and inhibition of neointimal hyperplasia were significantly promoted by transplanted EPCs. The degree of reendothelialisation of the EPC7d and EPC14d groups was higher than that of the BI7d and BI14d groups, and the difference in neointimal hyperplasia was observed between the EPC14d and BI14d groups. The number of endothelial cells on the luminal surface of the EPC14d group was higher than that of the BI14d group. The number of infiltrated macrophages in the injured artery decreased in the EPC transplanted groups. Conclusions Transplanted EPCs had chemotactic enrichment and attached to the injured arterial luminal surface. Although decreasing significantly after the fourth day at the site of injury after transplantation, transplanted EPCs could still promote reendothelialisation and inhibit neointimal hyperplasia. The underlying mechanism is through paracrine cytokines and not differentiation into mature endothelial cells.


Sign in / Sign up

Export Citation Format

Share Document