scholarly journals Two fractions of rough endoplasmic reticulum from rat liver. I. Recovery of rapidly sedimenting endoplasmic reticulum in association with mitochondria.

1977 ◽  
Vol 72 (3) ◽  
pp. 714-725 ◽  
Author(s):  
G C Shore ◽  
J R Tata

Low-speed centrifugation (640 g) of rat liver homogenates, prepared with a standard ionic medium, yielded a pellet from which a rapidly sedimenting fraction of rough endoplasmic reticulum (RSER) was recovered free of nuclei. This fraction contained 20-25% of cellular RNA and approximately 30% of total glucose-6-phosphatase (ER marker) activity. A major portion of total cytochrome c oxidase (mitochondrial marker) activity was also recovered in this fraction, with the remainder sedimenting between 640 and 6,000 g. Evidence is provided which indicates that RSER may be intimately associated with mitochondria. Complete dissociation of ER from mitochondria in the RSER fraction required very harsh conditions. Sucrose density gradient centrifugation analysis revealed that 95% dissociation could be achieved when the RSER fraction was first resuspended in buffer containing 500 mM KCl and 20 mM EDTA, and subjected to shearing. Excluding KCl, EDTA, or shearing from the procedure resulted in incomplete separation. Both electron microscopy and marker enzyme analysis of mitochondria purified by this procedure indicated that some structural damage and leakage of proteins from matrix and intermembrane compartments had occurred. Nevertheless, when mitochondria from RSER and postnuclear 6,000-g pellet fractions were purified in this way fromanimals injected with [35S]methionine +/- cycloheximide, mitochondria from the postnuclear 6,000-g pellet were found to incorporate approximately two times more cytoplasmically synthesized radioactive protein per milligram mitochondrial protein (or per unit cytochrome c oxidase activity) than did mitochondria from the RSER fraction. Mitochondria-RSER associations, therefore, do not appear to facilitate enhanced incorporation of mitochondrial proteins which are newly synthesized in the cytoplasm.

1982 ◽  
Vol 208 (2) ◽  
pp. 505-507 ◽  
Author(s):  
S Parimoo ◽  
N Rao ◽  
G Padmanaban

The specific activity and content of cytochrome oxidase in the rough endoplasmic reticulum-mitochondrion complex are higher than in the mitochondrial fraction. Radiolabelling studies with the use of hepatocytes and isolated microsomal and rough endoplasmic reticulum-mitochondrion fractions, followed by immunoprecipitation with anti-(cytochrome oxidase) antibody, reveal that the nuclear-coded cytoplasmic subunits of cytochrome oxidase are preferentially synthesized in the latter fraction. The results have a bearing on the mechanism of transport of these subunits into mitochondria.


1979 ◽  
Vol 180 (2) ◽  
pp. 273-279 ◽  
Author(s):  
D Auf Dem Brinke ◽  
R D Hesch ◽  
J Köhrle

We describe the existence of at least two thyroxine 5′-deiodinases in rat liver. They co-fractionate with NADPH-cytochrome c reductase, the marker enzyme for membranes of the endoplasmic reticulum. Subcellular-localization studies of the most active microsomal thyroxine 5′-deiodinase were performed under substrate saturation and at optimal pH 6.8. This enzyme was a Km(app.) of about 3 microM-thyroxine and a Vmax. of about 8 ng of tri-iodothyronine/min per mg of protein. Our study confirms in part the earlier reports of microsomal localization of thyroxine 5′-deiodination. However, this process is not mediated by only a single enzyme.


1989 ◽  
Vol 35 (5) ◽  
pp. 565-572 ◽  
Author(s):  
David B. Carson ◽  
Joseph J. Cooney

Cells of the filamentous fungus Cladosporium resinae synthesize many more microbodies when they are grown on an n-alkane than when they are grown on glucose. Cladosporium resinae was grown on n-dodecane and spheroplasts were prepared, disrupted, and fractionated by differential and density gradient centrifugation. A fraction was isolated which was enriched in catalase, a marker enzyme for microbodies. Another fraction was isolated which was enriched in cytochrome c oxidase, a marker for mitochondria. Urate oxidase, a second marker for microbodies, was not detected in cell extracts. The microbody and mitochondrial fractions were relatively free of contamination from the endoplasmic reticulum and cytosol as indicated by the amounts of glucose-6-phosphatase and glucose-6-phosphate dehydrogenase present, respectively. Transmission electron microscopy revealed that the catalase-enriched fraction contained intact microbodies, with mitochondria as a minor contaminant. Catalase was localized in microbodies by staining with 3,3′-diaminobenzidine. Mitochrondria were present in the cytochrome c oxidase enriched fraction and took up the vital stain Janus green B. In similar preparations from cells grown on glucose, catalase was largely nonparticulate. Microbodies were not observed in thin sections prepared from density gradient fractions, but mitochondria were present in a cytochrome c oxidase enriched fraction.Key words: Cladosporium resinae, microbodies, mitochondria, catalase, cytochrome c oxidase.


1974 ◽  
Vol 140 (2) ◽  
pp. 157-167 ◽  
Author(s):  
Néstor F. González-Cadavid ◽  
Carmen Sáez De Córdova

The functional distinction of membrane-bound and free polyribosomes for the synthesis of exportable and non-exportable proteins respectively is not so strict as was initially thought, and it was therefore decided to investigate their relative contribution to the elaboration of an internal protein integrated into a cell structure. Cytochrome c was chosen as an example of a soluble mitochondrial protein, and the incorporation of [14C]leucine and δ-amino[14C]laevulinate into the molecule was studied by using different ribosomal preparations from regenerating rat liver. A new procedure was devised for the purification of cytochrome c, based on ion-exchange chromatography combined with sodium dodecyl sulphate–polyacrylamide-gel electrophoresis. In spite of cytochrome c being a non-exportable protein, the membrane-bound polyribosomes were at least as active as the free ribosomes in the synthesis in vitro of the apoprotein and the haem moiety. The detergent-treated ribosomes could also effect the synthesis of cytochrome c, although at a lower rate. Since in liver more than two-thirds of the ribosomes are bound to the endoplasmic-reticulum membranes, it is considered that in vivo they are responsible for the synthesis of most of the cytochrome c content of the cell. This suggests that in secretory tissues the endoplasmic reticulum plays a predominant role in mitochondrial biogenesis, although free ribosomes may participate in the partial turnover of some parts of the organelle. The hypothesis on the functional specialization of the different kinds of ribosomes was therefore modified to account for their parallel intervention in the synthesis of proteins associated with membranous structures.


1981 ◽  
Vol 194 (2) ◽  
pp. 541-549 ◽  
Author(s):  
P H Reinhart ◽  
F L Bygrave

The maturation of glucagon-stimulated Ruthenium Red-insensitive Ca2+-transport activity was determined in livers of rats ranging in age from 5 days preterm to 10 weeks of adult life. Previous indications are that this activity is confined to vesicles derived mainly from the endoplasmic reticulum. Perinatal-rat liver contains near-adult values of Ruthenium Red-insensitive Ca2+-transport activity, and exhibits large transient increases in the rate of this activity at two stages of development, immediately after birth, and at 2-5 days after birth. The administration of glucagon to foetal rats, at developmental stages after 19.5 days of gestation (2.5 days before birth), results in a large stable increase (greater than 100%) of Ca2+-transport activity in a subsequently isolated ‘heavy’ microsomal fraction. That this fraction was enriched in vesicles derived from the rough endoplasmic reticulum was indicated by both an electron-microscopic examination and a marker-enzyme analysis of the subcellular fractions. The administration of glucagon into newborn animals only hours old does not enhance further the initial rate of Ca2+-transport activity, and from day 1 to 10 weeks after birth the administration of the hormone results in the moderate enhancement of Ca2+ transport. Experiments with cyclic AMP and inhibitors of phosphodiesterase activity suggest that cyclic AMP plays a key role in the enhancement by glucagon of Ruthenium Red-insensitive Ca2+ transport, and arguments are presented that this transport system has an important metabolic role in the redistribution of intracellular Ca2+ in liver tissue.


1987 ◽  
Vol 242 (2) ◽  
pp. 417-423 ◽  
Author(s):  
Y Li ◽  
A Naqui ◽  
T G Frey ◽  
B Chance

A simple and rapid method for the isolation of a large quantity of cytochrome c oxidase from bovine heart mitochondria was developed, based on selective solubilization of mitochondrial protein with first Triton and then lauryl maltoside. Gel filtration shows that the lauryl maltoside-solubilized oxidase preparation is in a hydrodynamically homogeneous state with a Stokes radius of 7.5 +/- 0.2 nm. It contains 8.0 mumol of haem (with an a/a3 ratio of 1)/g of protein. The catalytic constant (maximum turnover number) with respect to cytochrome c approaches 600 S-1. After further purification of the solubilized enzyme on a sucrose-gradient centrifugation, the purified enzyme has a haem content of 10.3 mumol/g of protein and eight major polypeptide bands shown on SDS/polyacrylamide-gel electrophoresis.


1972 ◽  
Vol 129 (3) ◽  
pp. 781-788 ◽  
Author(s):  
F. Morin ◽  
S. Tay ◽  
H. Simpkins

Plasma-membrane as well as smooth-, rough- and degranulated-endoplasmic-reticulum-membrane fractions were isolated from the microsomal pellet of rat liver. The purity of these fractions, as determined by marker-enzyme activities, electron microscopy, cholesterol content and RNA content, was found to be adequate for a comparative structural study. Major differences in lipid and protein composition were found to exist between the plasma membrane and the endoplasmic reticulum, but not between the smooth and the rough fractions of the endoplasmic reticulum. Differences in the location of membrane protein thiol groups and the mobility of the membrane phospholipids were observed between the plasma membranes and the endoplasmic reticulum, and these could be explained by differences in protein and lipid composition. However, by employing fluorescence and spin-labelling techniques structural changes were also observed between the smooth and the rough endoplasmic-reticulum fractions. These results suggest that the structural heterogeneity existing between the two latter membrane fractions occurs near or on their membrane surfaces and is not due to the greater number of ribosomes bound to the rough endoplasmic-reticulum fraction.


1981 ◽  
Vol 669 (2) ◽  
pp. 222-230 ◽  
Author(s):  
Peter Merle ◽  
Jochen Jarausch ◽  
Michael Trapp ◽  
Renate Scherka ◽  
Bernhard Kadenbach

Sign in / Sign up

Export Citation Format

Share Document