scholarly journals Localization of the heparin-releasable lipase in situ in the rat liver

1979 ◽  
Vol 181 (1) ◽  
pp. 245-246 ◽  
Author(s):  
T Kuusi ◽  
E A Nikklä ◽  
I Virtanen ◽  
P K J Kinnunen

Immunofluorescence and immuno-electron microscopy were used for the localization of the heparin-releasable lipase in situ in the rat liver. The lipase is located exclusively on the liver endothelial cells. No labelling could be detected on the parenchymal of Kupffer cells, or in the livers of heparin-pretreated animals. The physiological significance of the endothelial localization of the hepatic lipase is discussed.

1997 ◽  
Vol 321 (2) ◽  
pp. 425-430 ◽  
Author(s):  
Belinda BREEDVELD ◽  
Kees SCHOONDERWOERD ◽  
Adrie J. M. VERHOEVEN ◽  
Rob WILLEMSEN ◽  
Hans JANSEN

Hepatic lipase (HL) is thought to be located at the vascular endothelium in the liver. However, it has also been implicated in the binding and internalization of chylomicron remnants in the parenchymal cells. In view of this apparent discrepancy between localization and function, we re-investigated the localization of HL in rat liver using biochemical and immunohistochemical techniques. The binding of HL to endothelial cells was studied in primary cultures of rat liver endothelial cells. Endothelial cells bound HL in a saturable manner with high affinity. However, the binding capacity accounted for at most 1% of the total HL activity present in the whole liver. These results contrasted with earlier studies, in which non-parenchymal cell (NPC) preparations had been found to bind HL with a high capacity. To study HL binding to the different components of the NPC preparations, we separated endothelial cells, Kupffer cells and blebs by counterflow elutriation. Kupffer cells and endothelial cells showed a relatively low HL-binding capacity. In contrast, the blebs, representing parenchymal-cell-derived material, had a high HL-binding capacity (33 m-units/mg of protein) and accounted for more than 80% of the total HL binding in the NPC preparation. In contrast with endothelial and Kupffer cells, the HL-binding capacity of parenchymal cells could account for almost all the HL activity found in the whole liver. These data strongly suggest that HL binding occurs at parenchymal liver cells. To confirm this conclusion in situ, we studied HL localization by immunocytochemical techniques. Using immunofluorescence, we confirmed the sinusoidal localization of HL. Immunoelectron microscopy demonstrated that virtually all HL was located at the microvilli of parenchymal liver cells, with a minor amount at the endothelium. We conclude that, in rat liver, HL is localized at the microvilli of parenchymal cells.


Hepatology ◽  
1987 ◽  
Vol 7 (4) ◽  
pp. 672-679 ◽  
Author(s):  
Danielle P. Praaning-Van Dalen ◽  
A. Margreet De Leeuw ◽  
A. Brouwer ◽  
Dick L. Knook

1988 ◽  
Vol 59 (03) ◽  
pp. 480-484 ◽  
Author(s):  
Bård Smedsrød ◽  
Monica Einarsson ◽  
Håkan Pertoft

SummaryExperiments were carried out to charact erize the specificity of uptake of tPA in rat liver cells. Endocytosis in liver endothelial cells of the native carbohydrate variants of tissue plasminogen activator (tPA), and tPA inactivated by diisopropyl fluorophosphate was found to be competitive, suggesting that the determinant being recognized by these cells is different from the active site. Fibronectin and urokinase, which show partial homology with tPA, did not compete with tPA for uptake in liver endothelial cells. Hyaluronic acid, collagen, or IgG, which are endocytosed by specific receptors in liver endothelial cells, did not interfere with the uptake.Reduced endocytosis by liver endothelial cells was observed with tPA modified in the carbohydrate side chains, suggesting that these structures are important for uptake. Ovalbumin, mannan, mannose, fructose, and EDTA, but not galactose, effectively inhibited uptake in liver endothelial cells of both native and diisopropyl fluorophosphate-inhibited tPA, but had very little effect on the uptake of tPA modified in the carbohydrate side chains.Endocytosis of native tPA by parenchymal cells could be inhibited by galactose, ovalbumin, and EDTA, but not by mannose.These results suggest that endocytosis of tPA by liver endothelial cells and parenchymal cells is mediated by the mannose and galactose receptors, respectively.


1988 ◽  
Vol 59 (03) ◽  
pp. 474-479 ◽  
Author(s):  
Monica Einarsson ◽  
Bård Smedsrød ◽  
Håkan Pertoft

SummaryThe mechanism of uptake of tissue plasminogen activator (tPA) in rat liver was studied. Radio-iodinated tPA was removed from the circulation after intravenous administration in a biphasic mode. The initial half life, t1/2(α), and the terminal phase, t1/2(β), were determined to be 0.5 min and 7.5 min, resp. Separation of the liver cells by collagenase perfusion and density centrifugation, revealed that the uptake per cell was two to three times higher in the non-parenchymal cells than in the parenchymal cells.Endocytosis of fluorescein isothiocyanate-labelled or 125I-labelled tPA was studied in pure cultures of liver cells in vitro. Liver endothelial cells and parenchymal cells took up and degraded tPA. Endocytosis was more efficient in liver endothelial cells than in parenchymal cells, and was almost absent in Kupffer cells.Competitivb inhibition experiments showing that excess unlabelled tPA could compete with the uptake and degradation of 125I-tPA, suggested that liver endothelial cells and parenchymal cells interact with the activator in a specific manner. Endocytosis of trace amounts of 125I-tPA in cultures of liver endothelial cells and parenchymal cells was inhibited by 50% in the presence of 19 nM unlabelled tPA. Agents that interfere with one or several steps of the endocytic machinery inhibited uptake and degradation of 125I-tPA in both cell types.These findings suggest that 1) liver endothelial cells and parenchymal cells are responsible for the rapid hepatic clearance of intravenously administered tPA; 2) the activator is taken up in these cells by specific endocytosis, and 3) endocytosed tPA is transported to the lysosomes where it is degraded.


Sign in / Sign up

Export Citation Format

Share Document